Kinematics differences between one-handed and two-handed tennis backhand using gyroscopes. An exploratory study
- Ruiz-Malagón, Emilio J 1
- Delgado-García, Gabriel 2
- Ritacco-Real, Maximiliano 1
- Soto-Hermoso, Víctor M. 1
-
1
Universidad de Granada
info
- 2 Pontifical University of Comillas
ISSN: 2695-4508
Argitalpen urtea: 2022
Alea: 4
Zenbakia: 1
Orrialdeak: 16-24
Mota: Artikulua
beta Ver similares en nube de resultadosBeste argitalpen batzuk: International Journal of Racket Sports Science
Laburpena
El objetivo principal del presente estudio es comparar la cinemática angular y la coordinación intersegmentaria del tren superior entre el revés a una y dos manos de tenis en una muestra de 20 jugadores de nivel competición mediante el uso de giróscopos, y comparar las velocidades de pelota y la precisión obtenidas en ambos tipos de revés. La cinemática angular, la coordinación intersegmentaria, la velocidad de pelota y la precisión se obtuvieron de cada jugador mediante una prueba de golpeo realizada con cuatro sensores inerciales colocados (tronco, cabeza, brazo y antebrazo). Se sostiene la hipótesis de que se encontraran diferencias significativas en términos de ωpico y coordinación intersegmentaria en alguno de los segmentos intervinientes en el revés a una y dos manos, pero sucederá lo contrario en las variables velocidad de pelota y precisión. Tras el análisis de los resultados, no se encontraron diferencias significativas entre el revés a una y dos manos en velocidad de pelota y precisión. Sin embargo, se encontraron velocidades angulares pico significativamente más altas en el tronco y brazo sobre el eje x en el revés a dos manos, lo que podría indicar que este tipo de revés genera una rotación de tronco y una rotación externa de brazo y antebrazo mayores que las del revés a una mano. Las velocidades angulares pico fueron significativamente mayores en el brazo y antebrazo sobre el eje z en el caso del revés a una mano, lo cual está relacionado con una mayor extensión del antebrazo acompañada de una terminación más alta del gesto técnico. En conclusión, el modelo propuesto de análisis biomecánico a través del uso de giróscopos es especialmente útil para el análisis cinemático de los golpes de tenis en estudios de campo y podría adaptarse fácilmente a otros deportes, suponiendo una alternativa portable y de bajo coste que además incluye toda la instrumentación y procesamiento de los datos.
Erreferentzia bibliografikoak
- Ahmadi, A., Rowlands, D. D., & James, D. A. (2010). Development of inertial and novel marker-based techniques and analysis for upper arm rotational velocity measurements in tennis. Sports Engineering, 12(4), 179-188. https://doi.org/10.1007/s12283-010-0044-1
- Ahmadi, A., Rowlands, D., & James, D. A. (2009). Towards a wearable device for skill assessment and skill acquisition of a tennis player during the first serve. Sports Technology, 2(3-4), 129-136. https://doi.org/10.1080/19346182.2009.9648510
- Akutagawa, S., & Kojima, T. (2005). Trunk rotation torques through the hip joints during the one-and two-handed backhand tennis strokes. Journal of sports sciences, 23(8), 781-793. https://doi.org/10.1080/02640410400021609
- Allen, T., Choppin, S., & Knudson, D. (2016). A review of tennis racket performance parameters. Sports Engineering, 19(1), 1-11. https://doi.org/10.1007/s12283-014-0167-x
- Bahamonde, R. (2005). Review of the biomechanical function of the elbow joint during tennis strokes. International SportMed Journal, 6(2), 42-63.
- Bertolotti, G. M., Cristiani, A. M., Colagiorgio, P., Romano, F., Bassani, E., Caramia, N., & Ramat, S. (2015). A wearable and modular inertial unit for measuring limb movements and balance control abilities. IEEE Sensors Journal, 16(3), 790-797. https://doi.org/10.1109/JSEN.2015.2489381
- Blackwell, J. R., & Cole, K. J. (1994). Wrist kinematics differ in expert and novice tennis players performing the backhand stroke: implications for tennis elbow. Journal of biomechanics, 27(5), 509-516. https://doi.org/10.1016/0021-9290(94)90062-0
- Bourke, A. K., & Lyons, G. M. (2008). A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical engineering and physics, 30(1), 84-90. https://doi.org/10.1016/j.medengphy.2006.12.001
- Brody, H., & Roetert, P. (2004). Optimizing ball and racket interaction. In Biomedical Engineering Principles in Sports (pp. 183-206). Boston, MA: Springer.
- Büthe, L., Blanke, U., Capkevics, H., & Tröster, G. (2016, June). A wearable sensing system for timing analysis in tennis. In 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 43-48). IEEE. https://doi.org/10.1109/BSN.2016.7516230
- Choppin, S., Goodwill, S., & Haake, S. (2011). Impact characteristics of the ball and racket during play at the Wimbledon qualifying tournament. Sports engineering, 13(4), 163-170. https://doi.org/10.1007/s12283-011-0062-7
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. Auflage). Hillsdale, N. J.: Erlbaum.
- Cosac, G., & Ionescu, D. B. (2015). Research approach for outlining the biomechanical parameters of the tennis serve. Palestrica of the Third Millennium Civilization & Sport, 16(4).
- Delgado-García, G., Vanrenterghem, J., Muñoz-García, A., Ruiz-Malagón, E. J., Mañas-Bastidas, A., & Soto-Hermoso, V. M. (2019). Probabilistic structure of errors in forehand and backhand groundstrokes of advanced tennis players. International Journal of Performance Analysis in Sport, 19(5), 698-710. https://doi.org/10.1080/24748668.2019.1647733
- Delgado-García, G., Vanrenterghem, J., Ruiz-Malagón, E. J., Molina-García, P., Courel-Ibáñez, J., & Soto-Hermoso, V. M. (2021). IMU gyroscopes are a valid alternative to 3D optical motion capture system for angular kinematics analysis in tennis. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 235(1), 3-12. https://doi.org/10.1177/1754337120965444
- Fanchiang, H. C., Finch, A., & Ariel, G. (2013). Effects of one and two handed tennis backhands hit with varied power levels on torso rotation. In ISBS-Conference Proceedings Archive (Vol. 1, No. 1). https://ojs.ub.uni-konstanz.de/cpa/article/view/5589
- Fernandez-Fernandez, J., Kinner, V., & Ferrauti, A. (2010). The physiological demands of hitting and running in tennis on different surfaces. The Journal of Strength & Conditioning Research, 24(12), 3255-3264. https://doi.org/10.1519/JSC.0b013e3181e8745f
- Fogt, N., & Persson, T. W. (2017). A pilot study of horizontal head and eye rotations in baseball batting. Optometry and vision science: official publication of the American Academy of Optometry, 94(8), 789-796. https://doi.org/10.1097/OPX.0000000000001100
- Genevois, C., Reid, M., Rogowski, I., & Crespo, M. (2015). Performance factors related to the different tennis backhand groundstrokes: a review. Journal of sports science & medicine, 14(1), 194-202. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306773/
- Giangarra, C. E., Conroy, B., Jobe, F. W., Pink, M., & Perry, J. (1993). Electromyographic and cinematographic analysis of elbow function in tennis players using single-and double-handed backhand strokes. The American Journal of Sports Medicine, 21(3), 394-399. https://doi.org/10.1177/036354659302100312
- Grimpampi, E., Masci, I., Pesce, C., & Vannozzi, G. (2016). Quantitative assessment of developmental levels in overarm throwing using wearable inertial sensing technology. Journal of Sports Sciences, 34(18), 1759-1765. https://doi.org/10.1080/02640414.2015.1137341
- Hansen, C., Martin, C., Rezzoug, N., Gorce, P., Bideau, B., & Isableu, B. (2017). Sequence-dependent rotation axis changes in tennis. Sports biomechanics, 16(3), 411-423. https://doi.org/10.1080/14763141.2017.1332237
- International Tennis Federation [ITF]. (2015). Approved tennis balls, classified surfaces y recognized courts- a guide to products and test methods.
- Kelley, J., Choppin, S. B., Goodwill, S. R., & Haake, S. J. (2010). Validation of a live, automatic ball velocity and spin rate finder in tennis. Procedia engineering, 2(2), 2967-2972. https://doi.org/10.1016/j.proeng.2010.04.096
- Knudson, D., & Blackwell, J. (1997). Upper extremity angular kinematics of the one-handed backhand drive in tennis players with and without tennis elbow. International Journal of Sports Medicine, 18(2), 79-82. https://doi.org/10.1055/s-2007-972599
- Kwon, S., Pfister, R., Hager, R. L., Hunter, I., & Seeley, M. K. (2017). Influence of tennis racquet kinematics on ball topspin angular velocity and accuracy during the forehand groundstroke. Journal of Sports Science & Medicine, 16(4), 505. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721180/
- Lafont, D. (2008). Gaze control during the hitting phase in tennis: a preliminary study. International Journal of Performance Analysis in Sport, 8(1), 85-100.
- Landlinger, J., Lindinger, S., Stöggl, T., Wagner, H., y Müller, E. (2010). Key factors and timing patterns in the tennis forehand of different skill levels. Journal of Sports Science and Medicine, 9(4), 643-651. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761808/
- Lenhard, W. & Lenhard, A. (2016). Calculation of Effect Sizes. Psychometrica. https://www.psychometrica.de/effect_size.html
- Lo, K. C., & Hsieh, Y. C. (2016). Comparison of ball-and-racket impact force in two-handed backhand stroke stances for different-skill-level tennis players. Journal of sports science & medicine, 15(2), 301-307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879444/
- Lyons, M., Al-Nakeeb, Y., Hankey, J., & Nevill, A. (2013). The effect of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. Journal of Sports Science and Medicine, 12(2), 298-308. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761827/
- Manal, K. M. D. I., Davis, I. M., Galinat, B., & Stanhope, S. (2003). The accuracy of estimating proximal tibial translation during natural cadence walking: bone vs. skin mounted targets. Clinical Biomechanics, 18(2), 126-131. https://doi.org/10.1016/S0268-0033(02)00176-6
- Muhamad, T. A., Rashid, A. A., Razak, M. R. A., & Salamuddin, N. (2011). A comparative study of backhand strokes in tennis among national tennis players in Malaysia. Procedia-Social and Behavioral Sciences, 15, 3495-3499.
- N. Marshall, R., & Elliott, B. C. (2000). Long-axis rotation: The missing link in proximal-to-distal segmental sequencing. Journal of sports sciences, 18(4), 247-254. https://doi.org/10.1080/026404100364983
- Reid, M. (2001) Biomechanics of the one and two-handed backhands. ITF Coaching and Sport Science Review, 9(24), 8-12.
- Reid, M., & Elliott, B. (2002). Tennis: The one‐and two‐handed backhands in tennis. Sports Biomechanics, 1(1), 47-68. https://doi.org/10.1080/14763140208522786
- Reid, M., Elliott, B., & Crespo, M. (2013). Mechanics and learning practices associated with the tennis forehand: a review. Journal of sports science & medicine, 12(2), 225-231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761830/
- Roetert, E. P., Brody, H., Dillman, C. J., Groppel, J. L., & Schultheis, J. M. (1995). The biomechanics of tennis elbow. An integrated approach. Clinics in Sports Medicine, 14(1), 47-57. https://europepmc.org/article/med/7712557
- Roetert, E. P., Garrett, G. E., Brown, S. W., & Camaione, D. N. (1992). Performance profiles of nationally ranked junior tennis players. The Journal of Strength & Conditioning Research, 6(4), 225-231.
- Sharma, M., Srivastava, R., Anand, A., Prakash, D., & Kaligounder, L. (2017, March). Wearable motion sensor based phasic analysis of tennis serve for performance feedback. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5945-5949). IEEE. https://doi.org/10.1109/ICASSP.2017.7953297
- Stępień, A., Bober, T., & Zawadzki, J. (2011). The kinematics of trunk and upper extremities in one-handed and two-handed backhand stroke. Journal of human kinetics, 30, 37-47. https://doi.org/10.2478/v10078-011-0071-4
- Van den Tillaar, R., & Ettema, G. (2006). A Comparison between Novices and Experts of the Velocity-Accuracy Trade-Off in Overarm Throwing. Perceptual and Motor Skills, 103(2), 503-514. https://doi.org/10.2466/pms.103.2.503-514