Genomic Designing for Biotic Stress Resistant Grapevine

  1. Vezzulli, Silvia
  2. Gramaje, David
  3. Tello, Javier
  4. Gambino, Giorgio
  5. Bettinelli, Paola
  6. Pirrello, Carlotta
  7. Schwandner, Anna
  8. Barba, Paola
  9. Angelini, Elisa
  10. Anfora, Gianfranco
  11. Mazzoni, Valerio
  12. Pozzebon, Alberto
  13. Palomares-Rius, Juan Emilio
  14. Martínez-Diz, Maria Pilar
  15. Toffolatti, Silvia Laura
  16. De Lorenzis, Gabriella
  17. De Paoli, Emanuele
  18. Perrone, Irene
  19. D’Incà, Erica
  20. Zenoni, Sara
  21. Wilmink, Jurrian
  22. Lacombe, Thierry
  23. Crespan, Manna
  24. Walker, M. Andrew
  25. Bavaresco, Luigi
  26. De la Fuente, Mario
  27. Fennell, Anne
  28. Tornielli, Giovanni Battista
  29. Forneck, Astrid
  30. Ibáñez, Javier
  31. Hausmann, Ludger
  32. Reisch, Bruce I.
  33. Mostrar todos los/as autores/as +
Libro:
Genomic Designing for Biotic Stress Resistant Fruit Crops

ISBN: 9783030918019 9783030918026

Año de publicación: 2022

Páginas: 87-255

Tipo: Capítulo de Libro

beta Ver similares en nube de resultados
DOI: 10.1007/978-3-030-91802-6_4 GOOGLE SCHOLAR
Repositorio institucional: lockAcceso abierto Editor

Resumen

Grapevines are challenged by a range of diseases and pests, causing economic losses and requiring often costly approaches to mitigate damage. Public interest in reducing the use of chemicals is a related challenge, along with climate change. Yet, the Vitis gene pool provides vast resources for the development of genetic resistance in rootstock and scion cultivars. Traditional breeding approaches have made great strides in the development of adaptive traits, and recent access to ‘omic technologies has further facilitated the identification of useful loci along with rapid trait introgression from wild species. Moreover, marker technologies are now used to stack multiple genes for the same trait into a single genotype, a heretofore barely accessible technology. Genomic technologies are also impacting germplasm characterization, and thereby facilitating “Breeding by Design” approaches. Genetic transformation and gene-editing technologies are also applicable for both cultivar improvement as well as functional studies of genes. The landscape for acceptance of new resistant cultivars is complex and with wine grapes, subject to high degrees of regulation especially in the European Union. With rootstocks, as well as table/raisin grapes, gaining acceptance in the marketplace for new cultivars developed through either traditional or marker-assisted approaches is routine. Yet even in the highly regulated EU environment, the adoption of new wine cultivars of interspecific origins is beginning to take place in both traditional wine growing regions as well as non-traditional regions nearby.

Referencias bibliográficas

  • Aballay E, Mårtensson A, Persson P (2011) Screening of rhizosphere bacteria from grapevine for their suppressive effect on Xiphinema index Thorne & Allen on In vitro grape plants. Plant Soil 347:313–325. https://doi.org/10.1007/s11104-011-0851-6
  • Aballay E, Ordenes P, Mårtensson A, Persson P (2013) Effects of rhizobacteria on parasitism by Meloidogyne ethiopica on grapevines. Eur J Plant Pathol 135:137–145. https://doi.org/10.1007/s10658-012-0073-7
  • Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C (2017) Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol 33:131. https://doi.org/10.1007/s11274-017-2303-9
  • AbuQamar S, Moustafa K, Tran LSP (2017) Mechanisms and strategies of plant defense against Botrytis cinerea. Crit Rev Biotechnol 37:262–274. https://doi.org/10.1080/07388551.2016.1271767
  • Adam-Blondon AF, Alaux M, Pommier C, Cantu D, Cheng ZM et al (2016) Towards an open grapevine information system. Hortic Res 3:22. https://doi.org/10.1038/hortres.2016.56
  • Agarwal A, Cunningham JP, Valenzuela I, Blacket MJ (2020) A diagnostic LAMP assay for the destructive grapevine insect pest, phylloxera (Daktulosphaira vitifoliae). Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-77928-9
  • Agrios GN (2004) Plant pathology, 5th edn. Elsevier Academic Press, Burlington, MA
  • Agüero CB, Uratsu SL, Greve C, Powell ALT, Labavitch JM et al (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51. https://doi.org/10.1111/J.1364-3703.2004.00262.X
  • Algarra Alarcon A, Lazazzara V, Cappellin L, Bianchedi PL, Schuhmacher R et al (2015) Emission of volatile sesquiterpenes and monoterpenes in grapevine genotypes following Plasmopara viticola inoculation in vitro. J Mass Spectrom 50:1013–1022. https://doi.org/10.1002/jms.3615
  • Ali K, Maltese F, Choi YH, Verpoorte R (2010) Metabolic constituents of grapevine and grape-derived products. Phytochem Rev 9:357–378. https://doi.org/10.1007/s11101-009-9158-0
  • Aliquó G, Torres R, Lacombe T, Boursiquot J-M, Laucou V et al (2017) Identity and parentage of some South American grapevine cultivars present in Argentina. Aust J Grape Wine Res 23:452–460. https://doi.org/10.1111/ajgw.12282
  • Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673. https://doi.org/10.1007/BF00265585
  • Alma A, Lessio F, Gonella E, Picciau L, Mandrioli M, Tota F (2018) New insights in phytoplasma-vector interaction: acquisition and inoculation of flavescence dorée phytoplasma by Scaphoideus titanus adults in a short window of time. Ann Appl Biology 173(1):55–62
  • Almada R, Cabrera N, Casaretto JA, Peña-Cortés H, Ruiz-Lara S et al (2011) Epigenetic repressor-like genes are differentially regulated during grapevine (Vitis vinifera L.) development. Plant Cell Rep 30:1959–1968. https://doi.org/10.1007/s00299-011-1104-0
  • Amala U, Chinniah C, Sawant IS, Yadav DS, Phad DM (2016) Comparative biology and fertility parameters of two spotted spider mite, Tetranychus urticae Koch. on different grapevine varieties. VITIS J Grapevine Res 55:31–36. https://doi.org/10.5073/vitis.2016.55.31-36
  • Anco DJ, Madden LV, Ellis MA (2012) Temporal patterns of sporulation potential of Phomopsis viticola on infected grape shoots, canes, and rachises. Plant Dis 96:1297–1302. https://doi.org/10.1094/PDIS-09-11-0806-RE
  • Anco DJ, Madden LV, Ellis MA (2013) Effects of temperature and wetness duration on the sporulation rate of Phomopsis viticola on infected grape canes. Plant Dis 97:579–589. https://doi.org/10.1094/PDIS-07-12-0666-RE
  • Anderson C, Choisne N, Adam-Blondon A-F, Dry IB (2011) Positional cloning of disease resistance genes in Grapevine. In: Adam-Blondon A-F, Martinez-Zapater J-M, Kole C (eds) Genetics, genomics, and breeding of grapes. Sciences Publishers, New York, NY, pp 186–210
  • Anderson K, Nelgen S (2020) Which winegrape varieties are grown where? A Global Empirical Picture, Revised. University of Adelaide Press, Adelaide, SA
  • Anfora G, Tasin M, de Cristofaro A, Ioriatti C, Lucchi A (2009) Synthetic grape volatiles attract mated Lobesia botrana females in laboratory and field bioassays. J Chem Ecol 35:1054–1062. https://doi.org/10.1007/s10886-009-9686-5
  • Antolín MC, Santesteban H, Ayari M, Aguirreolea J, Sánchez-Díaz M (2010) Grapevine fruiting cuttings: an experimental system to study grapevine physiology under water deficit conditions. In: Delrot S, Medrano H, Or E, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer, Dordrecht, Netherlands, pp 151–163. https://doi.org/10.1007/978-90-481-9283-0_11
  • Antonić B, Jančíková S, Dordević D, Tremlová B (2020) Grape pomace valorization: a systematic review and meta-analysis. Foods 9:1627. https://doi.org/10.3390/foods9111627
  • Antonielli L, Compant S, Strauss J, Sessitsch A, Berger H (2014) Draft genome sequence of Phaeomoniella chlamydospora strain RR-HG1, a grapevine trunk disease (esca)-related member of the ascomycota. Genome Announc 2:10–12. https://doi.org/10.1128/genomeA.00098-14
  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157. https://doi.org/10.1038/s41586-019-1711-4
  • Aradhya MK, Dangl GS, Prins BH, Boursiquot J-M, Walker MA et al (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–192. https://doi.org/10.1017/S0016672303006177
  • Aradhya MK, Wang Y, Walker MA, Prins BH, Koehmstedt AM et al (2013) Genetic diversity, structure, and patterns of differentiation in the genus Vitis. Plant Syst Evol 299:317–330. https://doi.org/10.1007/s00606-012-0723-4
  • Arancibia C, Riaz S, Agüero C, Ramirez-Corona B, Alonso R et al (2018) Grape phylloxera (Daktulosphaira vitifoliae Fitch) in Argentina: ecological associations to diversity, population structure and reproductive mode. Aust J Grape Wine Res 24:284–291. https://doi.org/10.1111/ajgw.12337
  • Aranda X, Armengol J (2019) La reglamentación sobre el registro y uso de variedades de vid para vinificación. Enoviticolura Los Recur Genéticos Vitic Ante El Cambio Glob 59:92–100
  • Arias GA, Nieto JC (1980) Observaciones sobre la biología de la araña amarilla (Tetranychus urticae Koch) en los viñedos de “Tierra de Barros” (Badajoz) durante 1978 y 1979. Ministerio de Agricultura, Dirección general de la producción agraria. Serv Def Plagas Insp Fitopatol 4:1–39
  • Arias GA, Nieto JC (1981) Observaciones sobre la biología de la “araña amarilla” (Tetranychus urticae Koch) y correlación entre sintomas y pérdidas en una viña de “Tierra de Barros” (Badajoz) durante 1980. Serv Def Plagas Insp Fitopatol Comun 9:1–41
  • Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C et al (2016) Grapevine pathogenic microorganisms: understanding infection strategies and host response scenarios. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00382
  • Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, López MA et al (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714. https://doi.org/10.1111/j.1365-294X.2006.03049.x
  • Aruani C, Ruiz VS, Eibach R (2015) Les variétés de vigne. Origine, évolution et identification. Rev Des Oenologues Des Tech Vitivinic Oenologiques Mag Trimest D’information Prof 42:21–22
  • Asghari S, Harighi B, Ashengroph M, Clement C, Aziz A et al (2020) Induction of systemic resistance to Agrobacterium tumefaciens by endophytic bacteria in grapevine. Plant Pathol 69:827–837. https://doi.org/10.1111/ppa.13175
  • Asplen MK, Anfora G, Biondi A, Choi D-SS, Chu D et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 2004(88):469–494. https://doi.org/10.1007/s10340-015-0681-z
  • Ayres MR, Wicks TJ, Scott ES, Sosnowski MR (2017) Developing pruning wound protection strategies for managing Eutypa dieback. Aust J Grape Wine Res 23:103–111. https://doi.org/10.1111/ajgw.12254
  • Baccari C, Antonova E, Lindow S (2019) Biological control of Pierce’s disease of grape by an endophytic bacterium. Phytopathology 109:248–256. https://doi.org/10.1094/PHYTO-07-18-0245-FI
  • Bacilieri R, Lacombe T, Le Cunff L, Di Vecchi-Staraz M, Laucou V et al (2013) Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol 13:25. https://doi.org/10.1186/1471-2229-13-25
  • Badieinia F, Khajehali J, Nauen R, Dermauw W, Van Leeuwen T (2020) Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi. Crop Prot 134:105166. https://doi.org/10.1016/j.cropro.2020.105166
  • Baginsky C, Contreras A, Covarrubias JI, Seguel O, Aballay E (2013) Control of plant-parasitic nematodes using cover crops in table grape cultivation in Chile. Int J Agric Nat Resour 40:547–557
  • Bagnoli B, Gargani E (2011) Survey on Scaphoideus titanus egg distribution on grapevine. Integr Prot Prod Vitic IOBC/Wprs Bull 67:233–237
  • Bajda S, Dermauw W, Greenhalgh R, Nauen R, Tirry L et al (2015) Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genomics 16:974. https://doi.org/10.1186/s12864-015-2157-1
  • Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791. https://doi.org/10.1038/nrg1916
  • Balint‐Kurti P (2019) The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol 20:mpp.12821. https://doi.org/10.1111/mpp.12821
  • Bao LV, Scatoni IB, Gaggero C, Gutiérrez L, Monza J et al (2015) Genetic diversity of grape phylloxera leaf-galling populations on Vitis species in Uruguay. Am J Enol Vitic 66:46–53. https://doi.org/10.5344/ajev.2014.14026
  • Baránek M, Křižan B, Ondrušíková E, Pidra M (2010) DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tissue Organ Cult 101:11–22. https://doi.org/10.1007/s11240-009-9656-1
  • Baránek M, Čechová J, Raddová J, Holleinová V, Ondrušíková E et al (2015) Dynamics and reversibility of the DNA methylation landscape of grapevine plants (Vitis vinifera) stressed by in vitro cultivation and thermotherapy. PLoS ONE 10:1–16. https://doi.org/10.1371/journal.pone.0126638
  • Barba P, Cadle-Davidson L, Harriman J, Glaubitz J, Brooks S et al (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84. https://doi.org/10.1007/s00122-013-2202-x
  • Barba P, Lillis J, Luce RS, Travadon R, Osier M et al (2018) Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines. Theor Appl Genet 131:1173–1189. https://doi.org/10.1007/s00122-018-3070-1
  • Barba P, Loughner R, Wentworth K, Nyrop JP, Loeb GM et al (2019) A QTL associated with leaf trichome traits has a major influence on the abundance of the predatory mite Typhlodromus pyri in a hybrid grapevine population. Hortic Res 6. https://doi.org/10.1038/s41438-019-0169-8
  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A et al (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377. https://doi.org/10.1007/s00122-005-2030-8
  • Barnett DE (1976) A revision of the Nearctic species of the genus Scaphoideus (Homoptera: Cicadellidae). Trans Am Entomol Soc 102:485–593
  • Barrett HC (1953) Survey of black rot resistance of the foliage of wild grape species. In: Proceedings of the American society for horticultural science, College Park, MD
  • Baser N, Broutou O, Verrastro V, Porcelli F, Ioriatti C et al (2018) Susceptibility of table grape varieties grown in South-Eastern Italy to Drosophila suzukii. J Appl Entomol 142:465–472. https://doi.org/10.1111/jen.12490
  • Batovska DI, Todorova IT, Parushev SP, Nedelcheva DV, Bankova VS et al (2009) Biomarkers for the prediction of the resistance and susceptibility of grapevine leaves to downy mildew. J Plant Physiol 166:781–785. https://doi.org/10.1016/j.jplph.2008.08.008
  • Baumgartner K, Fujiyoshi PT, Travadon R, Castlebury LA, Wilcox WF et al (2013) Characterization of species of Diaporthe from wood cankers of grape in Eastern North American vineyards. Plant Dis 97:912–920. https://doi.org/10.1094/PDIS-04-12-0357-RE
  • Bavaresco L (2019) Impact of grapevine breeding for disease resistance on the global wine industry. Acta Hortic 1248:7–14. https://doi.org/10.17660/ActaHortic.2019.1248.2
  • Bazzi C, Alexandrova M, Stefani E, Anaclerio F, Burr TJ (1999) Biological control of Agrobacterium vitis using non-tumorigenic Agrobacteria. VITIS J Grapevine Res 38:31–35
  • Belli G, Bianco PA, Conti M (2010) Grapevine yellows in Italy: past, present and future. J Plant Pathol 92:303–326. https://doi.org/10.4454/jpp.v92i2.172
  • Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon A-F et al (2009) Resistance to Plasmopara viticola in grapevine 'Bianca' is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176. https://doi.org/10.1007/s00122-009-1167-2
  • Bello A, Arias M, López-Pérez JA, García-Álvarez A, Fresno J et al (2004) Biofumigation, fallow and nematode management in vineyard replant. Nematropica 34:53–64
  • Benelli L, Thomson I (2019) Sex pheromone aerosol devices for mating disruption: challenges for a brighter future. Insects 10:308. https://doi.org/10.3390/insects10100308
  • Benheim D, Rochfort S, Ezernieks V, Korosi GA, Powell KS et al (2011) Early detection of grape phylloxera (Daktulosphaira vitifoliae Fitch) infestation through identification of chemical biomarkers. Acta Hortic 904:17–24. https://doi.org/10.17660/ActaHortic.2011.904.2
  • Berbegal M, Ramón-Albalat A, León M, Armengol J (2020) Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Manag Sci 76:967–977. https://doi.org/10.1002/ps.5605
  • Bergamini C, Cardone MF, Anaclerio A, Perniola R, Pichierri A et al (2013) Validation assay of p3-VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Mol Biotechnol 54:1021–1030. https://doi.org/10.1007/s12033-013-9654-8
  • Bernard MB, Horne PA, Hoffmann AA (2005) Eriophyoid mite damage in Vitis vinifera (grapevine) in Australia: Calepitrimerus vitis and Colomerus vitis (Acari: Eriophyidae) as the common cause of the widespread ‘Restricted Spring Growth’ syndrome. Exp Appl Acarol 35:83–109. https://doi.org/10.1007/s10493-004-1986-4
  • Bernardo R (2014) Essentials of plant breeding. Stemma Press, Woodbury, Minnesota
  • Bertazzon N, Borgo M, Angelini E (2010) The complete genome sequence of the BD variant of Grapevine Leafroll-associated Virus 2. Arch Virol 155:1717–1719. https://doi.org/10.1007/s00705-010-0769-y
  • Bertazzon N, Bagnaresi P, Forte V, Mazzucotelli E, Filippin L et al (2019) Grapevine comparative early transcriptomic profiling suggests that Flavescence dorée phytoplasma represses plant responses induced by vector feeding in susceptible varieties. BMC Genomics 20:1–27. https://doi.org/10.1186/s12864-019-5908-6
  • Bertin S, Cavalieri V, Gribaudo I, Sacco D, Marzachì C et al (2016) Transmission of Grapevine Virus A and Grapevine Leafroll-associated Virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) Nymphs from Plants with Mixed Infections. J Econ Entomol 109:1504–1511. https://doi.org/10.1093/jee/tow120
  • Bertini E, Tornielli GB, Pezzotti M, Zenoni S (2019) Regeneration of plants from embryogenic callus-derived protoplasts of Garganega and Sangiovese grapevine (Vitis vinifera L.) cultivars. Plant Cell Tissue Organ Cult 138:239–246. https://doi.org/10.1007/s11240-019-01619-1
  • Bettiga LJ, Gubler WD (2015) “Bunch rots”. In: Bettiga LJ (ed) Grape pest management. University of California, Agriculture and Natural Resources, Davis, CA pp 3343:93–103
  • Bewick AJ, Schmitz RJ (2017) Gene body DNA methylation in plants. Curr Opin Plant Biol 36:103–110. https://doi.org/10.1016/j.pbi.2016.12.007
  • Bhattarai G, Fennell A, Londo JP, Coleman C, Kovacs LG (2021) A novel grape downy mildew resistance locus from Vitis rupestris. Am J Enol Vitic 72:12–20. https://doi.org/10.5344/ajev.2020.20030
  • Bianchi D, Brancadoro L, De Lorenzis G (2020) Genetic diversity and population structure in a Vitis spp. Core collection investigated by SNP Markers. Diversity 12:103. https://doi.org/10.3390/d12030103
  • Bierman A, LaPlumm T, Cadle-Davidson L, Gadoury D, Martinez D et al (2019) A high-throughput phenotyping system using machine vision to quantify severity of grapevine powdery mildew. Plant Phenomics 2019:1–13. https://doi.org/10.34133/2019/9209727
  • Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8:521–539. https://doi.org/10.1016/j.molp.2014.12.022
  • Billet K, Malinowska MA, Munsch T, Unlubayir M, Adler S et al (2020) Semi-targeted metabolomics to validate biomarkers of grape downy mildew infection under field conditions. Plants 9:1008. https://doi.org/10.3390/plants9081008
  • Billones-Baaijens R, Jones EE, Ridgway HJ, Jaspers MV (2014) Susceptiblity of common rootstock and scion varieties of grapevines to Botryosphaeriaceae species. Australas Plant Pathol 43:25–31. https://doi.org/10.1007/s13313-013-0228-9
  • Bini F, Kuczmog A, Putnoky P, Otten L, Bazzi C et al (2008) Novel pathogen-specific primers for the detection of Agrobacterium vitis and Agrobacterium tumefaciens. VITIS J Grapevine Res 47:181–189. https://doi.org/10.5073/vitis.2008.47.181-189
  • Bird G, Diamond C, Warner F, Davenport J (1994) Distribution and regulation of meloidogyne nataliei. J Nematol 26:727–730
  • Bitsadze N, Aznarashvili M, Vercesi A, Chipashvili R, Failla O et al (2015) Screening of Georgian grapevine germplasm for susceptibility to downy mildew (Plasmopara viticola). VITIS J Grapevine Res 54:193–196. https://doi.org/10.5073/vitis.2015.54.special-issue
  • Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675. https://doi.org/10.1007/s00122-012-1942-3
  • Blanc-Mathieu R, Perfus-Barbeoch L, Aury J-M, Da Rocha M, Gouzy J et al (2017) Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLOS Genet 13:e1006777. https://doi.org/10.1371/journal.pgen.1006777
  • Blanco-Ulate B, Allen G, Powell ALT, Cantu D (2013a) Draft genome sequence of Botrytis cinerea BcDW1, inoculum for noble rot of grape berries. Genome Announc 1. https://doi.org/10.1128/genomeA.00252-13
  • Blanco-Ulate B, Vincenti E, Powell ALT, Cantu D (2013b) Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front Plant Sci 4:1–16. https://doi.org/10.3389/fpls.2013.00142
  • Blanco-Ulate B, Rolshausen P, Cantu D (2013c) Draft genome sequence of the ascomycete Phaeoacremonium aleophilum strain UCR-PA7, a causal agent of the esca disease complex in Grapevines. Genome Announc 1:e00390–e413. https://doi.org/10.1128/genomeA.00390-13
  • Blank L, Wolf T, Eimert K, Schröder M-B (2009) Differential gene expression during hypersensitive response in phylloxera -resistant rootstock ‘Börner’ using custom oligonucleotide arrays. J Plant Interact 4:261–269. https://doi.org/10.1080/17429140903254697
  • Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl EH et al (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53. https://doi.org/10.1007/s00122-011-1565-0
  • Body MJA, Appel HM, Edger PP, Schultz JC (2019) A gall-forming insect manipulates hostplant phytohormone synthesis, concentrations, and signaling. bioRxiv 658823. https://doi.org/10.1101/658823
  • Bois B, Zito S, Calonnec A, Ollat, N. (2017). Climate vs grapevine pests and diseases worldwide: the first results of a global survey. J Int des Sci la Vigne du Vin 51:133–139. https://doi.org/10.20870/oeno-one.2016.0.0.1780
  • Boller E, Janser E, Zahner S, Potter C (1985) Kann Herbizideinsatz im Weinbau Spinnmilbenprobleme verursachen? Schweiz Zeit Obs Weinb 121:527–531
  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
  • Borgo M, Pegoraro G, Sartori E (2016) Susceptibility of grape varieties to esca disease. BIO Web Conf 7:01041. https://doi.org/10.1051/bioconf/20160701041
  • Borie B, Jacquiot L, Jamaux-Despréaux I, Larignon P, Péros JP (2002) Genetic diversity in populations of the fungi Phaeomoniella chlamydospora and Phaeoacremonium aleophilum on grapevine in France. Plant Pathol 51:85–96. https://doi.org/10.1046/j.0032-0862.2001.658.x
  • Boso S, Santiago JL, Martínez MC (2005) A method to evaluate downy mildew resistance in Grapevine. Agron Sustain Dev 25:163–165. https://doi.org/10.1051/agro:2004062
  • Boso S, Alonso-Villaverde V, Gago P, Santiago JL, Martínez MC (2011) Susceptibility of 44 grapevine (Vitis vinifera L.) varieties to downy mildew in the field. Aust J Grape Wine Res 17:394–400. https://doi.org/10.1111/j.1755-0238.2011.00157.x
  • Boso S, Alonso-Villaverde V, Gago P, Santiago JL, Martínez MC (2014) Susceptibility to downy mildew (Plasmopara viticola) of different Vitis varieties. Crop Prot 63:26–35. https://doi.org/10.1016/j.cropro.2014.04.018
  • Bouquet A (1986) Introduction dans l’espèce Vitis vinifera L. d’un caractère de résistance à l’oidium (Uncinula necator Schw. Burr.) issu de l’espèce Muscadinia rotundifolia (Michx.) Small. Vignevini 12:141–146
  • Bouquet A (2011) Grapevines and viticulture. In: Adam-Blondon AM, Martinez-Zapater J, Kole C (eds) Genetics, genomics, and breeding of grapes. Science Publishers, pp 1–29. https://doi.org/10.1201/b10948-2
  • Boursiquot JM, Lacombe T, Laucou V, Julliard S, Perrin FX et al (2009) Parentage of Merlot and related winegrape cultivars of southwestern France: discovery of the missing link. Aust J Grape Wine Res 15:144–155. https://doi.org/10.1111/j.1755-0238.2008.00041.x
  • Bova S, Rosenthal Y, Liu Z, Godad SP, Yan M (2021) Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589:548–553. https://doi.org/10.1038/s41586-020-03155-x
  • Bove F, Bavaresco L, Caffi T, Rossi V (2019) Assessment of resistance components for improved phenotyping of grapevine varieties resistant to downy mildew. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01559
  • Bovey RM, Baggiolini A, Bolay E, Bovay R, Corbaz G et al (1979) La défense des plantes cultivées. Ed. Payot, Lausanne, Suisse
  • Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633. https://doi.org/10.1139/g96-080
  • Bowers JE, Meredith CP (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nat Genet 16:84–87. https://doi.org/10.1038/ng0597-84
  • Bowers JE, Boursiquot JM, This P, Chu K, Johansson H et al (1999) Historical genetics: the parentage of chardonnay, gamay, and other wine grapes of Northeastern France. Science (80-) 285:1562–1565. https://doi.org/10.1126/science.285.5433.1562
  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308
  • Brilli M, Asquini E, Moser M, Bianchedi PL, Perazzolli M et al (2018) A multi-omics study of the grapevine-downy mildew (Plasmopara viticola) pathosystem unveils a complex protein coding- and noncoding-based arms race during infection. Sci Rep 8. https://doi.org/10.1038/s41598-018-19158-8
  • Brown AHD (1995) The core collection at the crossroads. In: Hodgkin, T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources. John Wiley and Sons, Chichester, UK, pp 3–19
  • Brown DJF, Dalmasso A, Trudgill DL (1993) Nematode pests of soft fruits and vines. In: Evans K, Trudgill DL, Webster JM (eds) Plant parasitic nematodes in temperate agriculture. CAB International, Wallingford UK, pp 427–462
  • Brown MV., Moore JN, Fenn P, McNew RW (1999) Comparison of leaf disk, greenhouse, and field screening procedures for evaluation of grape seedlings for downy mildew resistance. HortScience 34:331–333. https://doi.org/10.21273/hortsci.34.2.331
  • Brown AA, Lawrence DP, Baumgartner K (2020) Role of basidiomycete fungi in the grapevine trunk disease esca. Plant Pathol 69:205–220. https://doi.org/10.1111/ppa.13116
  • Brown AA, Travadon R, Lawrence DP, Torres G, Zhuang G et al (2021) Pruning-wound protectants for trunk-disease management in California table grapes. Crop Prot 141:105490. https://doi.org/10.1016/j.cropro.2020.105490
  • Bruez E, Lecomte P, Grosman J, Doublet B, Bertsch C et al (2013) Overview of grapevine trunk diseases in France in the 2000s. Phytopathol Mediterr 52:262–275. https://doi.org/10.14601/Phytopathol_Mediterr-11578
  • Brulé D, Villano C, Davies LJ, Trdá L, Claverie J et al (2019) The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnol J 17:812–825. https://doi.org/10.1111/pbi.13017
  • Buonassisi D, Colombo M, Migliaro D, Dolzani C, Peressotti E et al (2017) Breeding for grapevine downy mildew resistance: a review of “omics” approaches. Euphytica 213:103. https://doi.org/10.1007/s10681-017-1882-8
  • Buonassisi D, Cappellin L, Dolzani C, Velasco R, Peressotti E et al (2018) Development of a novel phenotyping method to assess downy mildew symptoms on grapevine inflorescences. Sci Hortic 236:79–89. https://doi.org/10.1016/j.scienta.2018.03.023
  • Burrack HJ, Fernandez GE, Spivey T, Kraus DA (2013) Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), an invasive frugivore. Pest Manag Sci 69:1173–1180. https://doi.org/10.1002/ps.3489
  • Cabezas JA, Ibáñez J, Lijavetzky D, Vélez MD, Bravo G et al (2011) A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 11:153. https://doi.org/10.1186/1471-2229-11-153
  • Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584. https://doi.org/10.1094/PDIS-92-11-1577
  • Cadle-Davidson L, Mahani S, Gadoury DM, Kozma P, Reisch BI (2011) Natural infection of Run1 -positive vines by naive genotypes of Erysiphe necator. VITIS J Grapevine Res 50:173–175
  • Cadle-Davidson L, Londo J, Martinez D, Sapkota S, Gutierrez B (2019) From phenotyping to phenomics: present and future approaches in grape trait analysis to inform grape gene function. In: Cantu D, Walker MA (eds) The grape genome. Springer, Cham, Switzerland, pp 199–222. https://doi.org/10.1007/978-3-030-18601-2_10
  • Caffarra A, Rinaldi M, Eccel E, Rossi V, Pertot I (2012) Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric Ecosyst Environ 148:89–101. https://doi.org/10.1016/j.agee.2011.11.017
  • Caffi T, Rossi V, Legler SE, Bugiani R (2011) A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathol 60:522–531. https://doi.org/10.1111/j.1365-3059.2010.02395.x
  • Caffi T, Legler SE, Rossi V, Bugiani R (2012) Evaluation of a warning system for early-season control of grapevine powdery mildew. Plant Dis 96:104–110. https://doi.org/10.1094/PDIS-06-11-0484
  • Caffi T, Legler SE, Bugiani R, Rossi V (2013) Combining sanitation and disease modelling for control of grapevine powdery mildew. Eur J Plant Pathol 135:817–829. https://doi.org/10.1007/s10658-012-0124-0
  • Caffi T, Legler S, González-Domınguez E, Rossi V (2017) Sustainable management of vineyards: the experience of a large-scale application of a web-based decision support system. In: Proceedings of 8th international workshop grapevine downy and powdery mildew. Oregon State University Campus, Corvallis, OR
  • Caliari V, Burin VM, Rosier JP, Bordignon Luiz MT (2014) Aromatic profile of Brazilian sparkling wines produced with classical and innovative grape varieties. Food Res Int 62:965–973. https://doi.org/10.1016/j.foodres.2014.05.013
  • Calonnec A, Cartolaro P, Naulin JM, Bailey D, Langlais M (2008) A host-pathogen simulation model: Powdery mildew of grapevine. Plant Pathol 57:493–508. https://doi.org/10.1111/j.1365-3059.2007.01783.x
  • Camporese P, Duso C (1996) Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: a case study. Exp Appl Acarol 20:1–22
  • Canaguier A, Grimplet J, Di Gaspero G, Scalabrin S, Duchêne E et al (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genomics Data 14:56–62. https://doi.org/10.1016/j.gdata.2017.09.002
  • Capriotti L, Baraldi E, Mezzetti B, Limera C, Sabbadini S (2020) Biotechnological approaches: gene overexpression, gene silencing, and genome editing to control fungal and oomycete diseases in Grapevine. Int J Mol Sci 21:5701. https://doi.org/10.3390/ijms21165701
  • Carisse O, Bacon R, Lefebvre A (2009) Grape powdery mildew (Erysiphe necator) risk assessment based on airborne conidium concentration. Crop Prot 28:1036–1044. https://doi.org/10.1016/j.cropro.2009.06.002
  • Carisse O, Lefebvre A (2011a) A model to estimate the amount of primary inoculum of Elsinoë ampelina. Plant Dis 95:1167–1171. https://doi.org/10.1094/PDIS-11-10-0798
  • Carisse O, Lefebvre A (2011b) Evaluation of Northern grape hybrid cultivars for their susceptibility to anthracnose caused by Elsinoë ampelina. Plant Heal Prog 12:9. https://doi.org/10.1094/php-2011-0805-01-rs
  • Carisse O, Morissette-Thomas V (2013) Epidemiology of grape anthracnose: factors associated with defoliation of grape leaves infected by Elsinoë ampelina. Plant Dis 97:222–230. https://doi.org/10.1094/PDIS-04-12-0393-RE
  • Carle P, Malembic-Maher S, Arricau-Bouvery N, Desqué D, Eveillard S et al (2011) “Flavescence dorée” phytoplasma genome: A metabolism oriented towards glycolysis and protein degradation. Bull Insectology 64:13–14
  • Carneiro RMDG, Randig O, Almeida MRA, Gomes ACMM (2004) Additional information on Meloidogyne ethiopica Whitehead, 1968 (Tylenchida: Meloidogynidae), a root-knot nematode parasitising kiwi fruit and grapevine from Brazil and Chile. Nematology 6:109–123. https://doi.org/10.1163/156854104323072982
  • Castillo P, Rapoport HF, Rius JEP, Díaz RMJ (2008) Suitability of weed species prevailing in Spanish vineyards as hosts for root-knot nematodes. Eur J Plant Pathol 120:43–51. https://doi.org/10.1007/s10658-007-9195-8
  • Castillo P, Gutiérrez-Gutiérrez C, Palomares-Rius JE, Cantalapiedra Navarrete C, Landa BB (2009) First report of root-knot nematode Meloidogyne hispanica infecting grapevines in Southern Spain. Plant Dis 93:1353–1353. https://doi.org/10.1094/PDIS-93-12-1353B
  • Cavaco AR, Maia M, Laureano G, Duarte B, Caçador I et al (2018) P-285-Identifying grapevine lipid biomarkers of resistance/susceptibility to Plasmopara viticola; towards a sustainable viticulture. Free Radic Biol Med 120:S131. https://doi.org/10.1016/j.freeradbiomed.2018.04.432
  • Celii M (2016) Analysis of epigenomic variability in grapevine and its relation with structural variation. Università degli studi di Udine
  • Chacón-Vozmediano JL, Gramaje D, León M, Armengol J, Moral J et al (2021) Cultivar susceptibility to natural infections caused by fungal grapevine trunk pathogens in La Mancha Designation of Origin (Spain). Plants 10:1171. https://doi.org/10.3390/plants10061171
  • Chang E-H, Jung S-M, Park S-J, Noh JH, Hur Y-Y et al (2014) Wine quality of grapevine “Cheongsoo” and the related metabolites on proton nuclear magnetic resonance (NMR) spectroscoscopy at the different harvest times. Plant Omics 7:80–86
  • Chávez Montes RA, De Fátima Rosas-Cárdenas F, De Paoli E, Accerbi M, Rymarquis LA et al (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5:3722. https://doi.org/10.1038/ncomms4722
  • Cheng S, Xie X, Xu Y, Zhang C, Wang X et al (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243:1041–1053. https://doi.org/10.1007/s00425-015-2459-1
  • Chitarrini G, Soini E, Riccadonna S, Franceschi P, Zulini L et al (2017) Identification of biomarkers for defense response to Plasmopara viticola in a resistant grape variety. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01524
  • Chitarrini G, Riccadonna S, Zulini L, Vecchione A, Stefanini M et al (2020) Two-omics data revealed commonalities and differences between Rpv12- and Rpv3-mediated resistance in grapevine. Sci Rep 10:1–15. https://doi.org/10.1038/s41598-020-69051-6
  • Chiu JC, Jiang X, Zhao L, Hamm CA, Cridland JM et al (2013) Genome of Drosophila suzukii, the spotted wing drosophila. G3 Genes|Genomes|Genetics 3:2257–2271. https://doi.org/10.1534/g3.113.008185
  • Chuche J, Thiéry D (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: A review. Agron Sustain Dev 34:381–403. https://doi.org/10.1007/s13593-014-0208-7
  • Ciliberti N, Fermaud M, Roudet J, Rossi V (2015) Environmental conditions affect Botrytis cinerea infection of mature grape berries more than the strain or transposon genotype. Phytopathology 105:1090–1096. https://doi.org/10.1094/PHYTO-10-14-0264-R
  • Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectology 65:149–160
  • Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U et al (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87:559–566. https://doi.org/10.1007/s10340-014-0617-z
  • Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M et al (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8:127. https://doi.org/10.1186/1471-2229-8-127
  • Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M et al (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121:1569–1585. https://doi.org/10.1007/s00122-010-1411-9
  • Clark MD, Teh SL, Burkness E, Moreira L, Watson G et al (2018) Quantitative Trait Loci identified for foliar phylloxera resistance in a hybrid grape population. Aust J Grape Wine Res 24:292–300. https://doi.org/10.1111/ajgw.12341
  • Clarke CW, Norng S, Yuanpeng D, Carmody BM, Powell KS (2018) Efficacy of steam and hot water disinfestation treatments against genetically diverse strains of grape phylloxera Daktulosphaira vitifoliae Fitch (Hemiptera: Phylloxeridae) on viticulture equipment and machinery. Aust J Grape Wine Res 24:275–281. https://doi.org/10.1111/ajgw.12329
  • Clarke CW, Norng S, Carmody BM, Yuanpeng D, Powell KS (2019) Hot water immersion as a disinfestation treatment for grapevine root cuttings against genetically diverse grape phylloxera Daktulosphaira vitifoliae Fitch. Aust J Grape Wine Res 25:396–403. https://doi.org/10.1111/ajgw.12407
  • Claverie M, Notaro M, Fontaine F, Wéry J (2020) Current knowledge on Grapevine Trunk Diseases with complex etiology: a systemic approach. Phytopathol Mediterr 59:29–53. https://doi.org/10.14601/Phyto-11150
  • Clayton CN, Ridings W (1970) Grape rust, Physopella ampelopsidis, on Vitis rotundifolia in North Carolina. Phytopathology 60:1022–1023
  • Cloete M, Fischer M, Mostert L, Halleen F (2015) Hymenochaetales associated with esca-related wood rots on grapevine with a special emphasis on the status of esca in South African vineyards. Phytopathol Mediterr 54:299–312. https://doi.org/10.14601/Phytopathol_Mediterr-16364
  • Cobos R, Mateos RM, Álvarez-Pérez JM, Olego MA, Sevillano S et al (2015) Effectiveness of natural antifungal compounds in controlling infection by grapevine trunk disease pathogens through pruning wounds. Appl Environ Microbiol 81:6474–6483. https://doi.org/10.1128/AEM.01818-15
  • Cocco A, Pacheco da Silva VC, Benelli G, Botton M, Lucchi A et al (2021) Sustainable management of the vine mealybug in organic vineyards. J Pest Sci 2004(94):153–185. https://doi.org/10.1007/s10340-020-01305-8
  • Cola G, Mariani L, Salinari F, Civardi S, Bernizzoni F et al (2014) Description and testing of a weather-based model for predicting phenology, canopy development and source-sink balance in Vitis vinifera L. cv. Barbera Agric Meteorol 184:117–136. https://doi.org/10.1016/j.agrformet.2013.09.008
  • Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P et al (2009) The powdery mildew resistance gene Ren1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genet 10:1–20. https://doi.org/10.1186/1471-2156-10-89
  • Comont G, Corio-Costet MF, Larignon P, Delmotte F (2010) AFLP markers reveal two genetic groups in the French population of the grapevine fungal pathogen Phaeomoniella chlamydospora. Eur J Plant Pathol 127:451–464. https://doi.org/10.1007/s10658-010-9611-3
  • Cooper ML, Hobbs MB, Strode B, Varela LG (2020) Grape erineum mite: postharvest sulfur use reduces subsequent leaf blistering. Calif Agric 74:94–100. https://doi.org/10.3733/ca.2020a0012
  • Correa J, Mamani M, Muñoz-Espinoza C, Laborie D, Muñoz C et al (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162. https://doi.org/10.1007/s00122-014-2286-y
  • Corrie AM, Crozier RH, Van Heeswijck R, Hoffmann AA (2002) Clonal reproduction and population genetic structure of grape phylloxera, Daktulosphaira vitifoliae, in Australia. Heredity (edinb) 88:203–211. https://doi.org/10.1038/sj.hdy.6800028
  • Cottral E, Ridgway HJ, Pascoe I, Edwards J, Taylor P (2001) UP-PCR analysis of Australian isolates of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum. Phytopathol Mediterr 40. https://doi.org/10.1400/14670
  • COUNCIL REGULATION (EC) No 2100/94 of 27 July 1994 on Community plant variety rights. (OJ L 227, 1.9.1994, p 1)
  • Crava CM, Zanini D, Amati S, Sollai G, Crnjar R et al (2020) Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. J Insect Physiol 125:104088. https://doi.org/10.1016/j.jinsphys.2020.104088
  • Crespan M, Cabello F, Giannietto S, Ibanez J, Kontic JK et al (2006) Malvasia delle Lipari, Malvasia di Sardegna, Greco di Gerace, Malvasia de Sitges and Malvasia dubrovačka–synonyms of an old and famous grape cultivar. VITIS J Grapevine Res 45:69–73
  • Crespan M, Meneghetti S, Cancellier S (2009) Identification and genetic relationship of the principal rootstocks cultivated in Italy. Am J Enol Vitic 60:349–356
  • Crespan M, Carraro R, Giust M, Migliaro D (2016) Origin of Termarina cultivar, another grapevine (Vitis vinifera L.) parthenocarpic somatic variant. Aust J Grape Wine Res 22:489–493. https://doi.org/10.1111/ajgw.12236
  • Crespan M, Migliaro D, Larger S, Pindo M, Petrussi C et al (2020) Unraveling the genetic origin of ‘Glera’, ‘Ribolla Gialla’ and other autochthonous grapevine varieties from Friuli Venezia Giulia (Northeastern Italy). Sci Rep. 10. https://doi.org/10.1038/s41598-020-64061-w
  • Cunha J, Zinelabidine LH, Teixeira-Santos M, Brazao J, Fevereiro P et al (2015) Grapevine cultivar “Alfrocheiro” or “Brunal” plays a primary role in the relationship among Iberian grapevines. VITIS J Grapevine Res 54:59–65
  • Cunha J, Ibáñez J, Teixeira-Santos M, Brazão J, Fevereiro P et al (2020) Genetic relationships among portuguese cultivated and Wild Vitis vinifera L. Germplasm Front Plant Sci 11:27. https://doi.org/10.3389/fpls.2020.00127
  • D’Onofrio C (2020) Introgression among cultivated and wild grapevine in Tuscany. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00202
  • D’Onofrio C, Tumino G, Gardiman M, Crespan M, Bignami C et al (2021) Parentage atlas of Italian grapevine varieties as inferred from SNP genotyping. Front Plant Sci 11:605934. https://doi.org/10.3389/fpls.2020.605934
  • Da Silva C, Zamperin G, Ferrarini A, Minio A, Dal Molin A et al (2013) The high polyphenol content of Grapevine cultivar tannat berries is conferred primarily by Genes that are not shared with the reference genome. Plant Cell 25:4777–4788. https://doi.org/10.1105/tpc.113.118810
  • De la Fuente Lloreda M (2018) Use of hybrids in viticulture. A challenge for the OIV. OENO One 52:231–234. https://doi.org/10.20870/oeno-one.2018.52.3.2312
  • Daane KM, Almeida RPP, Bell VA, Walker JTS, Botton M et al (2012) Biology and management of mealybugs in Vineyards. In: Arthropod management in vineyards: Springer, Dordrecht, Netherlands, pp 271–307. https://doi.org/10.1007/978-94-007-4032-7_12
  • Daane KM, Vincent C, Isaacs R, Ioriatti C (2018) Entomological opportunities and challenges for sustainable viticulture in a global market. Annu Rev Entomol 63:193–214. https://doi.org/10.1146/annurev-ento-010715-023547
  • Daane KM, Yokota GY, Walton VM, Hogg BN, Cooper ML et al (2020) Development of a mating disruption program for a mealybug, Planococcus ficus, in Vineyards. Insects 11:635. https://doi.org/10.3390/insects11090635
  • Dai L, Wang D, Xie X, Zhang C, Wang X et al (2016) The novel gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in Transgenic Vitis vinifera L. Front Plant Sci 7:695. https://doi.org/10.3389/fpls.2016.00695
  • Dal Bosco D, Sinski I, Ritschel PS, Camargo UA, Fajardo TVM et al (2018) Expression of disease resistance in genetically modified grapevines correlates with the contents of viral sequences in the T-DNA and global genome methylation. Transgenic Res 27:379–396. https://doi.org/10.1007/s11248-018-0082-1
  • Dal Santo S, Zenoni S, Sandri M, De Lorenzis G, Magris G et al (2018) Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G×E) on the berry transcriptome. Plant J 93:1143–1159. https://doi.org/10.1111/tpj.13834
  • Dalbó MA, Weeden NF, Reisch BI (2000) QTL analysis of disease resistance in interspecific hybrid grapes. Acta Hortic 528:217–222. https://doi.org/10.17660/ActaHortic.2000.528.29
  • Dalbó MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic Sci 126:83–89. https://doi.org/10.21273/JASHS.126.1.83
  • Dalla Costa L, Mandolini M, Poletti V, Martinelli L (2010) Comparing 17-β-estradiol supply strategies for applying the XVE-Cre/loxP system in grape gene transfer (Vitis vinifera L.). VITIS J Grapevine Res 49:201–208
  • Dalla Costa L, Piazza S, Campa M, Flachowsky H, Hanke M-V et al (2016) Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tissue Organ Cult 124:471–481. https://doi.org/10.1007/s11240-015-0907-z
  • Dalla Costa L, Malnoy M, Gribaudo I (2017) Breeding next generation tree fruits: technical and legal challenges. Hortic Res 4:1–11. https://doi.org/10.1038/hortres.2017.67
  • Dalla Costa L, Malnoy M, Lecourieux D, Deluc L, Ouaked-Lecourieux F et al (2019) The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS). OENO One 53:205–228. https://doi.org/10.20870/oeno-one.2019.53.2.2405
  • Dalla Costa L, Piazza S, Pompili V, Salvagnin U, Cestaro A et al (2020) Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacterium tumefaciens stable gene transfer. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-77110-1
  • Dandekar AM, Gouran H, Ibáñez AM, Uratsu SL, Agüero CB et al (2012) An engineered innate immune defense protects grapevines from Pierce's disease. Proc Natl Acad Sci USA 109:3721–3725. https://doi.org/10.1073/pnas.1116027109
  • Dandekar AM, Jacobson A, Ibáñez AM, Gouran H, Dolan DL et al (2019) Trans-graft protection against Pierce’s disease mediated by Transgenic Grapevine Rootstocks. Front Plant Sci 10:1–10. https://doi.org/10.3389/fpls.2019.00084
  • Das M, Bhowmick TS, Ahern SJ, Young R, Gonzalez CF (2015) Control of Pierce’s disease by phage. PLoS ONE 10:1–15. https://doi.org/10.1371/journal.pone.0128902
  • Daykin ME (1984) Histopathology of ripe rot caused by Colletotrichum gloeosporioides on muscadine grape. Phytopathology 74:1339. https://doi.org/10.1094/Phyto-74-1339
  • De Andrés MT, Benito A, Pérez-Rivera G, Ocete R, Lopez MA et al (2012) Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol 21:800–816. https://doi.org/10.1111/j.1365-294X.2011.05395.x
  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466. https://doi.org/10.1007/BF02860827
  • de Lillo E, Pozzebon A, Valenzano D, Duso C (2018) An intimate relationship between eriophyoid mites and their host plants–a review. Front Plant Sci 9:1–14. https://doi.org/10.3389/fpls.2018.01786
  • De Lorenzis G, Chipashvili R, Failla O, Maghradze D (2015) Study of genetic variability in Vitis vinifera L. germplasm by high-throughput Vitis18kSNP array: the case of Georgian genetic resources. BMC Plant Biol 15:154. https://doi.org/10.1186/s12870-015-0510-9
  • Delmas CEL, Fabre F, Jolivet J, Mazet ID, Richart Cervera S et al (2016) Adaptation of a plant pathogen to partial host resistance: Selection for greater aggressiveness in grapevine downy mildew. Evol Appl 9:709–725. https://doi.org/10.1111/eva.12368
  • Delmas CEL, Dussert Y, Delière L, Couture C, Mazet ID et al (2017) Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew. Mol Ecol 26:1936–1951. https://doi.org/10.1111/mec.14006
  • Delrot S, Grimplet J, Carbonell-bejerano P, Schwandner A, Bert P et al (2020) Genetic and genomic approaches for adaptation of grapevine to climate change. In: Kole C (ed) Genomic designing of climate-smart fruit crops. Springer, Cham, Switzerland, pp 157–270
  • Demangeat G, Voisin R, Minot J-C, Bosselut N, Fuchs M et al (2005) Survival of Xiphinema index in vineyard soil and retention of Grapevine Fanleaf Virus over extended time in the absence of host plants. Phytopathology 95:1151–1156. https://doi.org/10.1094/PHYTO-95-1151
  • Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VLS (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383. https://doi.org/10.1007/s10340-014-0591-5
  • Detjen LR (1919) Some F1 hybrids of Vitis rotundifolia with related species and genera. North Carolina Agri Exp Stat Technical Bull 18:1–50
  • Deytieux-Belleau C, Geny L, Roudet J, Mayet V, Donèche B et al (2009) Grape berry skin features related to ontogenic resistance to Botrytis cinerea. Eur J Plant Pathol 125:551–563. https://doi.org/10.1007/s10658-009-9503-6
  • Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G (2000) Conservation of microsatellite loci within the genus Vitis. Theor Appl Genet 101:301–308. https://doi.org/10.1007/s001220051483
  • Di Gaspero G, Cattonaro F (2010) Application of genomics to grapevine improvement. Aust J Grape Wine Res 16:122–130. https://doi.org/10.1111/j.1755-0238.2009.00072.x
  • Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R et al (2012) Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet 124:277–286. https://doi.org/10.1007/s00122-011-1703-8
  • Di Genova A, Almeida A, Muñoz-Espinoza C, Vizoso P, Travisany D et al (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7. https://doi.org/10.1186/1471-2229-14-7
  • Di Marco S, Osti F, Cesari A (2004) Experiments on the control of esca by Trichoderma. Phytopathol Mediterr 43:108–115. https://doi.org/10.14601/Phytopathol_Mediterr-1730
  • Di Marco S, Osti F, Calzarano F, Roberti R, Veronesi A et al (2011) Effects of grapevine applications of fosetyl-aluminium formulations for downy mildew control on “esca” and associated fungi. Phytopathol Mediterr 50:285–299. https://doi.org/10.14601/Phytopathol_Mediterr-9802
  • Di Vecchi-Staraz M, Laucou V, Bruno G, Lacombe T, Gerber S et al (2009) Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp. sylvestris. J Hered 100:66–75. https://doi.org/10.1093/jhered/esn084
  • Díaz GA, Latorre BA (2013) Efficacy of paste and liquid fungicide formulations to protect pruning wounds against pathogens associated with grapevine trunk diseases in Chile. Crop Prot 46:106–112. https://doi.org/10.1016/j.cropro.2013.01.001
  • Díaz-Riquelme J, Zhurov V, Rioja C, Pérez-Moreno I, Torres-Pérez R et al (2016) Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranyhus urticae. BMC Genomics 17:1–15. https://doi.org/10.1186/s12864-016-2401-3
  • Divilov K, Barba P, Cadle-Davidson L, Reisch BI (2018) Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet 131:1133–1143. https://doi.org/10.1007/s00122-018-3065-y
  • Donald TM, Pellerone F, Adam-Blondon A-F, Bouquet A, Thomas MR et al (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. TAG Theor Appl Genet 104:610–618. https://doi.org/10.1007/s00122-001-0768-1
  • Downie DA (1999) Performance of native grape phylloxera on host plants within and among terrestrial islands in Arizona, USA. Oecologia 121:527. https://doi.org/10.1007/s004420050959
  • Downie DA (2010) Baubles, bangles, and biotypes: a critical review of the use and abuse of the biotype concept. J Insect Sci 10:1–18. https://doi.org/10.1673/031.010.14136
  • Dry IB, Feechan A, Anderson C, Jermakow AM, Bouquet A et al (2010) Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. In: Gerling C (ed) Environmental sustainable viticulture practices and practicality. Apple Academic Press Inc, Oakville, Canada, pp 94–105. https://doi.org/10.1111/j.1755-0238.2009.00076.x
  • Dry I, Riaz S, Fuchs M, Sosnowski M, Thomas M (2019) Scion breeding for resistance to biotic stresses. In: Cantu D, Walker MA (eds) The grape genome. Springer, Cham, Switzerland, pp 319–347. https://doi.org/10.1007/978-3-030-18601-2_15
  • Du YP, Wang ZS, Zhai H (2011) Grape root cell features related to phylloxera resistance and changes of anatomy and endogenous hormones during nodosity and tuberosity formation. Aust J Grape Wine Res 17:291–297. https://doi.org/10.1111/j.1755-0238.2011.00131.x
  • Du Y, Dai W, Dietrich CH (2017) Mitochondrial genomic variation and phylogenetic relationships of three groups in the genus Scaphoideus (Hemiptera: Cicadellidae: Deltocephalinae). Sci Rep 7:16908. https://doi.org/10.1038/s41598-017-17145-z
  • Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics 9:516. https://doi.org/10.1186/1471-2164-9-516
  • Duso C, Pasqualetto C (1993) Factors affecting the potential of phytoseiid mites (Acari: Phytoseiidae) as biocontrol agents in North-Italian vineyards. Exp Appl Acarol 17:241–258. https://doi.org/10.1007/BF02337274
  • Duso C, de Lillo E (1996) Damage and control of eriophyoid mites, grape. In: Lindquist EE, Bruin J, Sabelis MW (eds) Eriophyid mites. Their biology, natural enemies and control. Elsevier Science B.V., Amsterdam, Netherlands, pp 571–582
  • Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp Appl Acarol 23:741–763. https://doi.org/10.1023/A:1006297225577
  • Duso C, Castagnoli M, Simoni S, Angeli G (2010) The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp Appl Acarol 51:151–168. https://doi.org/10.1007/s10493-009-9300-0
  • Duso C, Pozzebon A, Kreiter S, Tixier M-SS, Candolfi M (2012) Management of phytophagous mites in European vineyards. In: Bostanian N, Vincent C, Isaacs R (eds) Arthropod management in vineyards: pests, approaches, and future directions. Springer, Dordrecht, Netherlands, pp 191–217. https://doi.org/10.1007/978-94-007-4032-7_9
  • Duso C, Van Leeuwen T, Pozzebon A (2020) Improving the compatibility of pesticides and predatory mites: recent findings on physiological and ecological selectivity. Curr Opin Insect Sci 39:63–68. https://doi.org/10.1016/j.cois.2020.03.005
  • Dussert Y, Mazet ID, Couture C, Gouzy J, Piron MC et al (2019) A high-quality grapevine downy mildew genome assembly reveals rapidly evolving and lineage-specific putative host adaptation genes. Genome Biol Evol 11:954–969. https://doi.org/10.1093/gbe/evz048
  • Eckerstorfer MF, Heissenberger A, Reichenbecher W, Steinbrecher RA, Waßmann F (2019) An EU perspective on biosafety considerations for plants developed by genome editing and other new genetic modification techniques (nGMs). Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00031
  • Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. VITIS J Grapevine Res 46:120–124
  • Eibach R, Töpfer R, Hausmann L (2010) Use of genetic diversity for grapevine resistance breeding. Mitteilungen Klosterneubg 60:332–337
  • Eichmeier A, Pečenka J, Peňázová E, Baránek M, Català-García S et al (2018) High-throughput amplicon sequencing-based analysis of active fungal communities inhabiting grapevine after hot-water treatments reveals unexpectedly high fungal diversity. Fungal Ecol 36:26–38. https://doi.org/10.1016/j.funeco.2018.07.011
  • Eisenmann B, Czemmel S, Ziegler T, Buchholz G, Kortekamp A et al (2019) Rpv3–1 mediated resistance to grapevine downy mildew is associated with specific host transcriptional responses and the accumulation of stilbenes. BMC Plant Biol 19:343. https://doi.org/10.1186/s12870-019-1935-3
  • Eitle MW, Carolan JC, Griesser M, Forneck A (2019a) The salivary gland proteome of root-galling grape phylloxera (Daktulosphaira vitifoliae Fitch) feeding on Vitis spp. PLoS ONE 14:1–18. https://doi.org/10.1371/journal.pone.0225881
  • Eitle MW, Griesser M, Vankova R, Dobrev P, Aberer S et al (2019b) Grape phylloxera (D. vitifoliae) manipulates SA/JA concentrations and signalling pathways in root galls of Vitis spp. Plant Physiol Biochem 144:85–91. https://doi.org/10.1016/j.plaphy.2019.09.024
  • Eitle MW, Loacker J, Meng-Reiterer J, Schuhmacher R, Griesser M et al (2019c) Polyphenolic profiling of roots (Vitis spp.) under grape phylloxera (D. vitifoliae Fitch) attack. Plant Physiol Biochem 135:174–181. https://doi.org/10.1016/j.plaphy.2018.12.004
  • Ekhvaia J, Gurushidze M, Blattner FR, Akhalkatsi M (2014) Genetic diversity of Vitis vinifera in Georgia: relationships between local cultivars and wild grapevine, V. vinifera L. subsp. sylvestris. Genet Resour Crop Evol 61:1507–1521. https://doi.org/10.1007/s10722-014-0125-2
  • Elad Y, Vivier M, Fillinger S (2016) Botrytis, the good, the bad and the ugly. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, Switzerland, pp 1–15. https://doi.org/10.1007/978-3-319-23371-0_1
  • Elbeaino T, Kiyi H, Boutarfa R, Minafra A, Martelli GP et al (2014) Phylogenetic and recombination analysis of the homing protein domain of Grapevine Fanleaf virus (GFLV) isolates associated with ‘yellow mosaic’ and ‘infectious malformation’ syndromes in grapevine. Arch Virol 159:2757–2764. https://doi.org/10.1007/s00705-014-2138-8
  • Elfert M, Ulrich D, Fischer M, Hoffmann C, Strumpf T (2013) Auf der suche nach Biomarkern im Weinblattmetabolom. J Fur Kult 65:19–23. https://doi.org/10.5073/JFK.2013.01.03
  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M et al (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39. https://doi.org/10.1186/1471-2229-13-39
  • Emanuelli F, Sordo M, Lorenzi S, Battilana J, Grando MS (2014) Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine. Mol Breed 33:235–241. https://doi.org/10.1007/s11032-013-9929-6
  • EPPO (2020a) Drosophila suzukii Datasheet. EPPO Global Database. https://gd.eppo.int/taxon/DROSSU/datasheet
  • EPPO (2020b) https://www.eppo.int/RESOURCES/eppo_standards
  • EPPO (2021) Scaphoideus titanus World distribution. EPPO Global Database.
  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M et al (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS ONE 7:32954. https://doi.org/10.1371/journal.pone.0032954
  • Erincik O, Madden LV, Ferree DC, Ellis MA (2003) Temperature and wetness-duration requirements for grape leaf and cane infection by Phomopsis viticola. Plant Dis 87:832–840. https://doi.org/10.1094/PDIS.2003.87.7.832
  • Esmenjaud D, Bouquet A (2009) Selection and application of resistant germplasm for grapevine nematodes management. In: Ciancio A, Mukerji KG (eds) Integrated management of fruit crops nematodes. Springer, Dordrecht, Netherlands, pp 195–214. https://doi.org/10.1007/978-1-4020-9858-1_8
  • Espinoza C, Schlechter R, Herrera D, Torres E, Serrano A et al (2013) Cisgenesis and intragenesis: new tools for improving crops. Biol Res 46:323–331. https://doi.org/10.4067/S0716-97602013000400003
  • EU Explanatory Note (2017) New techniques in Agricultural Biotechnology
  • EUROSTAT (2019) Agriculture, forestry and fishery statistics. doi:10.2785/743056
  • Eveillard S, Jollard C, Labroussaa F, Khalil D, Perrin M et al (2016) Contrasting susceptibilities to Flavescence dorée in Vitis vinifera, rootstocks and wild Vitis species. Front Plant Sci 7:1–12. https://doi.org/10.3389/fpls.2016.01762
  • Luo F, Zang F (1990) Grape breeding in China. VITIS J Grapevine Res 29:212. https://doi.org/10.5073/vitis.1990.29.special-issue.212-218
  • FAOSTAT (2014) Sustainability Dimensions. FAO Statistical Yearbook 2014:105–130
  • FAO-OIV (2016) Table and Dried Grapes. Non-alcoholic products of the vitivinicultural sector intended for human consumption.
  • Fedele G, González-Domínguez E, Delière L, Díez-Navajas AM, Rossi V (2020) Consideration of latent infections improves the prediction of Botrytis bunch rot severity in vineyards. Plant Dis 104:1291–1297. https://doi.org/10.1094/PDIS-11-19-2309-RE
  • Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P et al (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661–674. https://doi.org/10.1111/tpj.12327
  • Feechan A, Kocsis M, Riaz S, Zhang W, Gadoury DM et al (2015) Strategies for Run1 deployment using Run2 and Ren2 to manage grapevine powdery mildew informed by studies of race specificity. Phytopathology 105:1104–1113. https://doi.org/10.1094/PHYTO-09-14-0244-R
  • Feliciano AJ, Eskalen A, Gubler WD (2004) Differential susceptibility of three grapevine cultivars to Phaeoacremonium aleophilum and Phaeomoniella chlamydospora in California. Phytopathol Mediterr 43:66–69. https://doi.org/10.14601/Phytopathol_Mediterr-1727
  • Ferrin DM (1977) Ascospore dispersal and infection of grapes by Guignardia bidwellii, the causal agent of grape black rot disease. Phytopathology 77:1501. https://doi.org/10.1094/Phyto-67-1501
  • Ferris H, Zheng L, Walker MA (2012) Resistance of grape rootstocks to plant-parasitic nematodes. J Nematol 44:377–386
  • Ferris H, Zheng L, Walker MA (2013) Soil temperature effects on the interaction of grape rootstocks and plant-parasitic nematodes. J Nematol 45:49–57
  • Firrao G, Andersen M, Bertaccini A, Boudon E, Bové JM et al (2004) “Candidatus Phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255. https://doi.org/10.1099/ijs.0.02854-0
  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ et al (2004) Quantitative Trait Locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515. https://doi.org/10.1007/s00122-003-1445-3
  • Fischer M, Ashnaei SP (2019) Grapevine, esca complex, and environment: the disease triangle. Phytopathol Mediterr 58:17–37. https://doi.org/10.13128/Phytopathol_Mediterr-25086
  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–669
  • Fong G, Walker MA, Granett J (1995) RAPD assessment of California phylloxera diversity. Mol Ecol 4:459–464. https://doi.org/10.1111/j.1365-294X.1995.tb00239.x
  • Fontaine MC, Austerlitz F, Giraud T, Labbé F, Papura D et al (2013) Genetic signature of a range expansion and leap-frog event after the recent invasion of Europe by the grapevine downy mildew pathogen Plasmopara viticola. Mol Ecol 22:2771–2786. https://doi.org/10.1111/mec.12293
  • Fontaine MC, Labbé F, Dussert Y, Delière L, Richart-Cervera S et al (2021) Europe as a bridgehead in the worldwide invasion history of grapevine downy mildew, Plasmopara viticola. Curr Biol 1–12. https://doi.org/10.1016/j.cub.2021.03.009
  • Foria S, Monte C, Testolin R, Di Gaspero G, Cipriani G (2019) Pyramidizing resistance genes in grape: a breeding program for the selection of elite cultivars. Acta Hortic 1248:549–554. https://doi.org/10.17660/ActaHortic.2019.1248.73
  • Foria S, Copetti D, Eisenmann B, Magris G, Vidotto M et al (2020) Gene duplication and transposition of mobile elements drive evolution of the Rpv3 resistance locus in grapevine. Plant J 101:529–542. https://doi.org/10.1111/tpj.14551
  • Forneck A, Huber L (2009) (A)sexual reproduction-a review of life cycles of grape phylloxera, Daktulosphaira vitifoliae. Entomol Exp Appl 131:1–10. https://doi.org/10.1111/j.1570-7458.2008.00811.x
  • Forneck A, Anhalt UCM, Mammerler R, Griesser M (2015) No evidence of superclones in leaf-feeding forms of Austrian grape phylloxera (Daktulosphaira vitifoliae). Eur J Plant Pathol 142:441–448. https://doi.org/10.1007/s10658-015-0624-9
  • Forneck A, Powell KS, Walker MA (2016) Scientific opinion: improving the definition of grape phylloxera biotypes and standardizing biotype screening protocols. Am J Enol Vitic 67:371–376. https://doi.org/10.5344/ajev.2016.15106
  • Forneck A, Dockner V, Mammerler R, Powell KS, Kocsis L et al (2017) PHYLLI–an international database for grape phylloxera (Daktulosphaira vitifoliae Fitch). Integr Prot Prod Vitic 128:45–51
  • Fraga H, Pinto JG, Santos JA (2019) Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Clim Change 152:179–193. https://doi.org/10.1007/s10584-018-2337-5
  • Frenkel O, Brewer MT, Milgroom MG (2010) Variation in pathogenicity and aggressiveness of Erysiphe necator from different Vitis spp. and geographic origins in the Eastern United States. Phytopathology 100:1185–1193. https://doi.org/10.1094/PHYTO-01-10-0023
  • Fresnedo-Ramírez J, Yang S, Sun Q, Karn A, Reisch BI et al (2019) Computational analysis of ampseq data for targeted, high-throughput genotyping of amplicons. Front Plant Sci 10:599. https://doi.org/10.3389/fpls.2019.00599
  • Fritschi FB, Lin H, Walker MA (2007) Xylella fastidiosa population dynamics in grapevine genotypes differing in susceptibility to Pierce’s disease. Am J Enol Vitic 58:326–332
  • Fu P, Tian Q, Lai G, Li R, Song S et al (2019) Cgr1, a ripe rot resistance QTL in Vitis amurensis ‘Shuang Hong’ grapevine. Hortic Res 6:67. https://doi.org/10.1038/s41438-019-0148-0
  • Fu P, Wu W, Lai G, Li R, Peng Y et al (2020) Identifying Plasmopara viticola resistance loci in grapevine (Vitis amurensis) via genotyping-by-sequencing-based QTL mapping. Plant Physiol Biochem 154:75–84. https://doi.org/10.1016/j.plaphy.2020.05.016
  • Fussler L, Kobes N, Bertrand F, Maumy M, Grosman J et al (2008) A characterization of grapevine trunk diseases in France from data generated by the National Grapevine Wood Diseases Survey. Phytopathology 98:571–579. https://doi.org/10.1094/PHYTO-98-5-0571
  • Gabler FM, Smilanick JL, Mansour M, Ramming DW, Mackey BE (2003) Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93:1263–1273. https://doi.org/10.1094/PHYTO.2003.93.10.1263
  • Gadoury DM, Pearson CP (1991) Heterothallism and pathogenic specialization in Uncinula necator. Phytopathology 81:1287. https://doi.org/10.1094/Phyto-81-1287
  • Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC et al (2012) Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 13:1–16. https://doi.org/10.1111/j.1364-3703.2011.00728.x
  • Gadoury DM, Wilcox WF, Rumbolz J, Gubler WD (2019) Powdery mildew. In: Wilcox WF, Gubler WD, Uyemoto JK (eds) Compendium of grape diseases, disorders, and pests, 2nd edn. APS Press, St. Paul, MN, pp 75–83
  • Galambos A, Zok A, Kuczmog A, Oláh R, Putnoky P et al (2013) Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance. Plant Cell Rep 32:1751–1757. https://doi.org/10.1007/s00299-013-1488-0
  • Gale, G Sandler, M Pinder R (2002) Saving the vine from Phylloxera: a never-ending battle. Wine a Sci Explor 70–91
  • Galet P (1988) Les vignes américaines. In: Cépages et vignobles de France. Charles Dehan, Montpellier, France
  • Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21:1163–1181. https://doi.org/10.1007/s11248-012-9602-6
  • Gao X, Becker LC, Becker DM, Starmer JD, Province MA (2010) Avoiding the high Bonferroni penalty in genome-wide association studies. Genet Epidemiol 34:100–105. https://doi.org/10.1002/gepi.20430
  • Gessler C, Pertot I, Perazzolli M (2011) Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol Mediterr 50:3–44. https://doi.org/10.14601/Phytopathol_Mediterr-9360
  • Giannetto S, Velasco R, Troggio M, Malacarne G, Storchi P et al (2008) A PCR-based diagnostic tool for distinguishing grape skin color mutants. Plant Sci 175:402–409. https://doi.org/10.1016/j.plantsci.2008.05.010
  • Gilligan TM, Epstein ME, Passoa SC, Powell JA, Sage OC et al (2011) Discovery of Lobesia botrana ([Denis & Schiffermller]) in California: An invasive species new to North America (Lepidoptera: Tortricidae). Proc Entomol Soc Washingt 113:14–30. https://doi.org/10.4289/0013-8797.113.1.14
  • Gindro K, Alonso-Villaverde V, Viret O, Spring J-L, Marti G et al (2012) Stilbenes: biomarkers of grapevine resistance to disease of high relevance for agronomy, oenology and human health. In: Mérillon JM, Ramawat KG (eds) Plant defence: biological control. Springer, Dordrecht, Netherlands, pp 25–54. https://doi.org/10.1007/978-94-007-1933-0_2
  • Girolami V (1981) Danni, soglie di intervento, controllo degli acari della vite. In: Proceedings, III incontro sulla difesa integrata della vite, 3–4 December 1981, Latina, Italy, pp 111–143
  • Gobbin D, Pertot I, Gessler C (2003) Genetic structure of a Plasmopara viticola population in an isolated Italian mountain vineyard. J Phytopathol 151:636–646. https://doi.org/10.1046/j.0931-1785.2003.00779.x
  • Gobbin D, Rumbou A, Linde CC, Gessler C (2006) Population genetic structure of Plasmopara viticola after 125 years of colonization in European vineyards. Mol Plant Pathol 7:519–531. https://doi.org/10.1111/j.1364-3703.2006.00357.x
  • Godefroid M, Cruaud A, Streito J-C, Rasplus J-Y, Rossi J-P (2019) Xylella fastidiosa: climate suitability of European continent. Sci Rep 9:8844. https://doi.org/10.1038/s41598-019-45365-y
  • Gomes BR, Bogo A, Copatti A, Guginski-Piva CA, de Morais AC et al (2019) Assessment of grapevine germoplasm collection for resistance to grape leaf rust (Phakopsora euvitis) using a leaf disc assay. Euphytica 215:1–11. https://doi.org/10.1007/s10681-019-2514-2
  • Gonzalez M (2010) Lobesia botrana: Polilla de la uva. Enología 1–5
  • González-Domínguez E, Caffi T, Ciliberti N, Rossi V (2015) A mechanistic model of Botrytis cinerea on grapevines that includes weather, vine growth stage, and the main infection pathways. PLoS ONE 10(10):e0140444. https://doi.org/10.1371/journal.pone.0140444
  • Gonzalez-Dominguez E, Caffi T, Languasco L, Latinovic N, Latinovic J et al (2021) Dynamics of Diaporthe ampelina conidia released from grape canes that overwintered in the vineyard. Plant Dis 1–38. https://doi.org/10.1094/pdis-12-20-2639-re
  • Gramaje D, García-Jiménez J, Armengol J (2010) Field evaluation of grapevine rootstocks inoculated with fungi associated with petri disease and esca. Am J Enol Vitic 61:512–520. https://doi.org/10.5344/ajev.2010.10021
  • Gramaje D, Mostert L, Armengol J (2011) Characterization of Cadophora luteo-olivacea and C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathol Mediterr 50:112–126. https://doi.org/10.14601/Phytopathol_Mediterr-8723
  • Gramaje D, Armengol J (2011) Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Dis 95:1040–1055. https://doi.org/10.1094/PDIS-01-11-0025
  • Gramaje D, Armengol J, Ridgway HJ (2013) Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. Eur J Plant Pathol 135:727–743. https://doi.org/10.1007/s10658-012-0110-6
  • Gramaje D, León M, Santana M, Crous PW, Armengol J (2014) Multilocus ISSR markers reveal two major genetic groups in Spanish and South African populations of the grapevine fungal pathogen Cadophora luteo-olivacea. PLoS ONE 9(10):e0110417. https://doi.org/10.1371/journal.pone.0110417
  • Gramaje D, Di Marco S (2015) Identifying practices likely to have impacts on grapevine trunk disease infections: a European nursery survey. Phytopathol Mediterr 54:313–324. https://doi.org/10.14601/Phytopathol_Mediterr-16317
  • Gramaje D, Mostert L, Groenewald JZ, Crous PW (2015) Phaeoacremonium: from esca disease to phaeohyphomycosis. Fungal Biol 119:759–783. https://doi.org/10.1016/j.funbio.2015.06.004
  • Gramaje D, Urbez-Torres JR, Sosnowski MR (2018) Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Dis 102:12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE
  • Granett J, Timper P, Lider LA (1985) Grape Phylloxera (Daktulosphaira vitifoliae) (Homoptera: Phylloxeridae) Biotypes in California. J Econ Entomol 78:1463–1467. https://doi.org/10.1093/jee/78.6.1463
  • Granett J, Walker MA, Kocsis L, Omer AD (2001) Biology and management of grape phylloxera. Annu Rev Entomol 46:387–412. https://doi.org/10.1146/annurev.ento.46.1.387
  • Grassi F, Arroyo-García R (2020) Editorial: Origins and domestication of the grape. Front Plant Sci 11:1176. https://doi.org/10.3389/fpls.2020.01176
  • Gray DJ, Li ZT, Dhekney SA (2014) Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Sci 228:3–10. https://doi.org/10.1016/j.plantsci.2014.03.023
  • Gribaudo I, Gambino G, Boccacci P, Perrone I, Cuozzo D (2017) A multi-year study on the regenerative potential of several Vitis genotypes. Acta Hortic 1155:45–50. https://doi.org/10.17660/ActaHortic.2017.1155.5
  • Griesser M, Lawo NC, Crespo-Martinez S, Schoedl-Hummel K, Wieczorek K et al (2015) Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots. Plant Sci 234:38–49. https://doi.org/10.1016/j.plantsci.2015.02.002
  • Grimplet J, Cramer GR, Dickerson JA, Mathiason K, van Hemert J et al (2009) VitisNet: “Omics” integration through grapevine molecular networks. PLoS ONE 4:e8365. https://doi.org/10.1371/journal.pone.0008365
  • Grimplet J, Van Hemert J, Carbonell-Bejerano P, Díaz-Riquelme J, Dickerson J et al (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 5:1–10. https://doi.org/10.1186/1756-0500-5-213
  • Guan X, Essakhi S, Laloue H, Nick P, Bertsch C et al (2016) Mining new resources for grape resistance against Botryosphaeriaceae: a focus on Vitis vinifera subsp. sylvestris. Plant Pathol 65:273–284. https://doi.org/10.1111/ppa.12405
  • Guarnaccia V, Groenewald JZ, Woodhall J, Armengol J, Cinelli T et al (2018) Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia Mol Phylogeny Evol Fungi 40:135–153. https://doi.org/10.3767/persoonia.2018.40.06
  • Gubler WD, Rademacher MR, Vasquez SJ, Thomas CS (1999) Control of powdery mildew using the UC Davis powdery mildew risk index. Apsnet Featur. https://doi.org/10.1094/APSnetFeature-1999-0199
  • Gubler WD, Leavitt GM, Bettiga LJ (2015) Downy mildew. In: Bettiga LJ (ed) Grape pest management. University of California, Agriculture and Natural Resources, Davis, CA, pp 117–119
  • Guo C, Guo R, Xu X, Gao M, Li X et al (2014) Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot 65:1513–1528. https://doi.org/10.1093/jxb/eru007
  • Guo R, Qiao H, Zhao J, Wang X, Tu M et al (2018) The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Front Plant Sci 9:1–16. https://doi.org/10.3389/fpls.2018.00545
  • Gur L, Reuveni M, Cohen Y, Cadle-Davidson L, Kisselstein B et al (2021) Population structure of Erysiphe necator on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environ Microbiol. https://doi.org/10.1111/1462-2920.15401
  • Hajdu E (2015) Grapevine breeding in Hungary. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Woodhead Publishing, Sawston, UK, pp 103–134. https://doi.org/10.1016/B978-1-78242-075-0.00006-5
  • Halleen F, Fourie PH (2016) An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. South African J Enol Vitic 37:104–114. https://doi.org/10.21548/37-2-825
  • Hammond-Kosack KE, Jones JDG (2015) Responses to plant pathogens. In: Buchanan BB, Gruissem W, Jones LR (eds) Biochemistry & molecular biology of plants. John Wiley & Sons, Ltd, Hoboken, NJ
  • Hanif M, Rahman M, Gao M, Yang J, Ahmad B et al (2018) Heterologous expression of the grapevine JAZ7 gene in Arabidopsis confers enhanced resistance to powdery mildew but not to Botrytis cinerea. Int J Mol Sci 19(12):3889. https://doi.org/10.3390/ijms19123889
  • Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Li X et al (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672. https://doi.org/10.1093/jxb/ers046
  • Harlan JR, Wet JMJ (1971) Toward a rational classification of cultivate plants. Taxon 20:509–517. https://doi.org/10.2307/1218252
  • Hart KH, Magarey RD, Emmett RW, Magarey PA (1993) Susceptibility of grapevine selections to black spot (anthracnose), Elsinöe ampelina. Aust Grapegrow Winemak 352:85–87
  • Hausmann L, Eibach R, Zyprian E, Töpfer R (2011) Genetic analysis of phylloxera root resistance in cultivar “Börner.” Acta Hortic 904:47–52. https://doi.org/10.17660/ActaHortic.2011.904.6
  • Hausmann L, Eibach R, Zyprian E, Töpfer R (2014) Sequencing of the phylloxera resistance locus Rdv1 of cultivar “Börner.” Acta Hortic 1046:73–78. https://doi.org/10.17660/ActaHortic.2014.1046.7
  • Hausmann L, Rex F, Töpfer R (2017) Evaluation and genetic analysis of grapevine black rot resistances. Acta Hortic 1188:285–290. https://doi.org/10.17660/ActaHortic.2017.1188.37
  • Hausmann L, Maul E, Ganesch A, Töpfer R (2019) Overview of genetic loci for traits in grapevine and their integration into the VIVC database. Acta Hortic 1248:221–226. https://doi.org/10.17660/ActaHortic.2019.1248.32
  • Haye T, Girod P, Cuthbertson AGS, Wang XG, Daane KM et al (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Sci (2004)89:643–651. https://doi.org/10.1007/s10340-016-0737-8
  • He M, Xu Y, Cao J, Zhu Z, Jiao Y et al (2013) Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma 250:129–140. https://doi.org/10.1007/s00709-012-0384-8
  • He R, Wu J, Zhang Y, Agüero CB, Li X et al (2017) Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vinifera grapevine. Protoplasma 254:1579–1589. https://doi.org/10.1007/s00709-016-1047-y
  • Héloir M-C, Adrian M, Brulé D, Claverie J, Cordelier S et al (2019) Recognition of elicitors in grapevine: from MAMP and DAMP perception to induced resistance. Front Plant Sci 10:e1117. https://doi.org/10.3389/fpls.2019.01117
  • Hemmer C, Djennane S, Ackerer L, Hleibieh K, Marmonier A et al (2018) Nanobody-mediated resistance to Grapevine Fanleaf Virus in plants. Plant Biotechnol J 16:660–671. https://doi.org/10.1111/pbi.12819
  • Hennessy CR, Daly AM, Hearnden MN (2007) Assessment of grapevine cultivars for resistance to Phakopsora euvitis. Australas Plant Pathol 36:313–317. https://doi.org/10.1071/AP07028
  • Herzog K, Wind R, Töpfer R (2015) Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea. Sensors (Switzerland) 15:12498–12512. https://doi.org/10.3390/s150612498
  • Hewitt WB, Pearson RC (1988) Phomopsis cane and leaf spot. In: Pearson RC, Goheen AC (eds) Compendium of grape diseases. APS Press, St. Paul, MN, pp 16–18
  • Highet A, Wicks TJ (1998) The incidence of Eutypa dieback in South Australian vineyards. Aust Grapegrow Winemak Annu Tech Issue 441a:135–136
  • Hill GN, Evans KJ, Beresford RM, Dambergs RG (2014) Comparison of methods for the quantification of Botrytis bunch rot in white wine grapes. Aust J Grape Wine Res 20:432–441. https://doi.org/10.1111/ajgw.12101
  • Hily JM, Demanèche S, Poulicard N, Tannières M, Djennane S et al (2018) Metagenomic-based impact study of transgenic grapevine rootstock on its associated virome and soil bacteriome. Plant Biotechnol J 16:208–220. https://doi.org/10.1111/pbi.12761
  • Hoffman LE, Wilcox WF, Gadoury DM, Seem RC, Riegel DG (2004) Integrated control of grape black rot: influence of host phenology, inoculum availability, sanitation, and spray timing. Phytopathology 94:641–650. https://doi.org/10.1094/PHYTO.2004.94.6.641
  • Hoffmann S, Di Gaspero G, Kovács L, Howard S, Kiss E et al (2008) Resistance to Erysiphe necator in the grapevine “Kishmish vatkana” is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438. https://doi.org/10.1007/s00122-007-0680-4
  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11:395–407. https://doi.org/10.1111/pbi.12055
  • Holtgräwe D, Rosleff Soerensen T, Hausmann L, Pucker B, Viehöver P et al (2020) A partially phase-separated genome sequence assembly of the Vitis rootstock ‘Börner’ (Vitis riparia × Vitis cinerea) and its exploitation for marker development and targeted mapping. Front Plant Sci 11:e00156. https://doi.org/10.3389/fpls.2020.00156
  • Hopkins DL (2005) Biological control of Pierce’s disease in the vineyard with strains of Xylella fastidiosa benign to grapevine. Plant Dis 89:1348–1352. https://doi.org/10.1094/PD-89-1348
  • Hopkins DL, Harris JW (2000) A Greenhouse Method for screening grapevine seedlings for resistance to anthracnose. HortScience 35:89–91. https://doi.org/10.21273/HORTSCI.35.1.89
  • Hou S, Liu Z, Shen H, Wu D (2019) Damage-associated molecular pattern-triggered Immunity in Plants. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00646
  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866
  • Hu Y, Li Y, Hou F, Wan D, Cheng Y et al (2018) Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera). Plant Sci 267:20–31. https://doi.org/10.1016/j.plantsci.2017.11.005
  • Hu Q, Zhu L, Zhang X, Guan Q, Xiao S et al (2018) GhCPK33 negatively regulates defense against Verticillium dahliae by phosphorylating GhOPR3. Plant Physiol 178:876–889. https://doi.org/10.1104/pp.18.00737
  • Hu Y, Gao YR, Yang LS, Wang W, Wang YJ et al (2019) The cytological basis of powdery mildew resistance in wild Chinese Vitis species. Plant Physiol Biochem 144:244–253. https://doi.org/10.1016/j.plaphy.2019.09.049
  • Hu Y, Cheng Y, Yu X, Liu J, Yang L et al (2021) Overexpression of two CDPKs from wild Chinese grapevine enhances powdery mildew resistance in Vitis vinifera and Arabidopsis. New Phytol 230:2029–2046. https://doi.org/10.1111/nph.17285
  • Hwang C-F, Xu K, Hu R, Zhou R, Riaz S et al (2010) Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape. Theor Appl Genet 121:789–799. https://doi.org/10.1007/s00122-010-1349-y
  • Hyma KE, Barba P, Wang M, Londo JP, Acharya CB et al (2015) Heterozygous mapping strategy (HetMappS) for high resolution genotyping-by-sequencing markers: a case study in grapevine. PLoS ONE 10:e0134880. https://doi.org/10.1371/journal.pone.0134880
  • Ibáñez J, Muñoz-Organero G, Zinelabidine LH, de Andrés MT, Cabello F et al (2012) Genetic origin of the grapevine cultivar Tempranillo. Am J Enol Vitic 63:549–553. https://doi.org/10.5344/ajev.2012.12012
  • Igolkina AA, Meshcheryakov G, Gretsova MV, Nuzhdin SV, Samsonova MG (2020) Multi-trait multi-locus SEM model discriminates SNPs of different effects. BMC Genomics 21:490. https://doi.org/10.1186/s12864-020-06833-2
  • Ilnitskaya E, Makarkina M, Tokmakov S, Kotlyar V (2020) DNA-marker identification of Rpv3 and Rpv12 resistance loci in genotypes of table and seedless grape varieties. In: BIO web of conferences. EDP sciences, vol 25, pp 03004. https://doi.org/10.1051/bioconf/20202503004
  • Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P et al (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137. https://doi.org/10.1603/EC10443
  • Ioriatti C, Walton V, Dalton D, Anfora G, Grassi A et al (2015) Drosophila suzukii (Diptera: Drosophilidae) and its potential impact to wine grapes during harvest in two cool climate wine grape production regions. J Econ Entomol 108:1148–1155. https://doi.org/10.1093/jee/tov042
  • Ioriatti C, Lucchi A (2016) Semiochemical strategies for tortricid moth control in apple orchards and vineyards in Italy. J Chem Ecol 42:571–583. https://doi.org/10.1007/s10886-016-0722-y
  • Ioriatti C, Guzzon R, Anfora G, Ghidoni F, Mazzoni V et al (2018) Drosophila suzukii (Diptera: Drosophilidae) contributes to the development of sour rot in grape. J Econ Entomol 111:283–292. https://doi.org/10.1093/jee/tox292
  • IPCC (2013) Climate change 2013 the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press UK
  • Jang HA, Oo MM, Kim D-GG, Yoon H-YY, Kim M-RR et al (2020) CC-NBS-LRR, a set of VvCRP markers, can distinguish cultivars with ripe rot resistance to Colletotrichum pathogens in grapevine. Hortic Environ Biotechnol 61:915–927. https://doi.org/10.1007/s13580-020-00290-2
  • Jang MH, Moon YS, Noh JH, Kim SH, Hong SK et al (2011) In vitro evaluation system for varietal resistance against ripe rot caused by Colletotrichum acutatum in grapevines. Hortic Environ Biotechnol 52:52–57. https://doi.org/10.1007/s13580-011-0190-9
  • Jarausch W, Angelini E, Eveillard, Sandrine Malembic-Maher S (2013) Management of fruit tree and grapevine phytoplasma diseases through genetic resistance. In: COST Action FA0807 integrated management of phytoplasma epidemics in different crop systems. New perspectives in phytoplasma disease management: Book of abstracts of presentations Work Groups 2–3. p 56
  • Javadi Khederi S, Khanjani M, Fayaz BA (2014a) Resistance of three grapevine cultivars to Grape Erineum Mite, Colomerus vitis (Acari: Eriophyidae), in field conditions. Persian J Acarol 3(1). https://doi.org/10.22073/pja.v3i1.10132
  • Javadi Khederi S, de Lillo E, Khanjani M, Gholami M (2014b) Resistance of grapevine to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in Western Iran and its correlation with plant features. Exp Appl Acarol 63:15–35. https://doi.org/10.1007/s10493-014-9778-y
  • Javadi Khederi S, Khanjani M, Gholami M, de Lillo E (2018a) Impact of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on the development of plants of grapevine cultivars of Iran. Exp Appl Acarol 74:347–363. https://doi.org/10.1007/s10493-018-0245-z
  • Javadi Khederi S, Khanjani M, Gholami M, Panzarino O, de Lillo E (2018b) Influence of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on grape (Vitis vinifera) defense mechanisms. Exp Appl Acarol 75:1–24. https://doi.org/10.1007/s10493-018-0252-0
  • Javadi Khederi S, Khanjani M, Gholami M, Bruno GL (2018c) Study of defense-related gene expression in grapevine infested by Colomerus vitis (Acari: Eriophyidae). Exp Appl Acarol 75:25–40. https://doi.org/10.1007/s10493-018-0255-x
  • Javadi Khederi S, Khanjani M, Gholami M, De Lillo E (2018d) Sources of resistance to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in grapevine cultivars. Syst Appl Acarol 23:405. https://doi.org/10.11158/saa.23.3.1
  • Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E et al (2016) Risk to plant health of Flavescence dorée for the EU territory. EFSA J 14:12. https://doi.org/10.2903/j.efsa.2016.4603
  • Jelly NS, Schellenbaum P, Walter B, Maillot P (2012) Transient expression of artificial microRNAs targeting Grapevine Fanleaf Virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res 21:1319–1327. https://doi.org/10.1007/s11248-012-9611-5
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (80-) 337:816–821. https://doi.org/10.1126/science.1225829
  • Johann L, do Nascimento JM, da Silva GL, Silva Carvalho G, Juarez Ferla N (2019) Life history and life table parameters of Panonychus ulmi (Acari: Tetranychidae) on two European grape cultivars. Phytoparasitica 47:79–86. https://doi.org/10.1007/s12600-018-00709-8
  • Jollard C, Malembic-Maher S, Labroussaa F, Khalil D, Perrin M et al (2019) Contrasting susceptibilities to Flavescence dorée in Vitis vinifera cultivars and progenies suggest segregation of genetic traits involved in disease response. Acta Hortic 1248:601–606. https://doi.org/10.17660/ActaHortic.2019.1248.81
  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286
  • Jones L, Riaz S, Morales-Cruz A, Amrine KC, McGuire B et al (2014) Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics 15:1081. https://doi.org/10.1186/1471-2164-15-1081
  • Jørgensen IH (1992) Discovery, characterization and exploitation of MLO powdery mildew resistance in barley. Euphytica 63:141–152. https://doi.org/10.1007/BF00023919
  • Jung J-H, Joe M-H, Kim D-H, Park H, Choi J et al (2018) Complete genome sequence of Planococcus sp. PAMC21323 isolated from Antarctica and its metabolic potential to detoxify pollutants. Stand Genomic Sci 13:31. https://doi.org/10.1186/s40793-018-0334-y
  • Jürges G, Kassemeyer HH, Dürrenberger M, Düggelin M, Nick P (2009) The mode of interaction between Vitis and Plasmopara viticola Berk. & Curt. Ex de Bary depends on the host species. Plant Biol 11:886–898. https://doi.org/10.1111/j.1438-8677.2008.00182.x
  • Kaler AS, Purcell LC (2019) Estimation of a significance threshold for genome-wide association studies. BMC Genomics 20:618. https://doi.org/10.1186/s12864-019-5992-7
  • Kaliterna J, Miličević T, Cvjetković B (2012) Grapevine trunk diseases associated with fungi from the Diaporthaceae family in Croatian vineyards. Arh Hig Rada Toksikol 63:471–479. https://doi.org/10.2478/10004-1254-63-2012-2226
  • Kantor A, McClements M, MacLaren R (2020) CRISPR-Cas9 DNA base-editing and prime-editing. Int J Mol Sci 21:6240. https://doi.org/10.3390/ijms21176240
  • Kaplan J, Travadon R, Cooper M, Hillis V, Lubell M et al (2016) Identifying economic hurdles to early adoption of preventative practices: the case of trunk diseases in California winegrape vineyards. Wine Econ Policy 5:127–141. https://doi.org/10.1016/j.wep.2016.11.001
  • Karn A, Zou C, Brooks S, Fresnedo-Ramírez J, Gabler F, Sun Q, Ramming D, Naegele R, Ledbetter C, Cadle-Davidson L (2021) Discovery of the Ren11 locus from Vitis aestivalis for stable resistance to grapevine powdery mildew in a family segregating for several unstable and tissue-specific quantitative resistance loci. Front Plant Sci 12:733899. https://doi.org/10.3389/fpls.2021.733899
  • Kassemeyer H-H, Gadoury DM, Hill G, Wilcox WF (2019) Downy mildew. In: Wilcox WF, Gubler WD, Uyemoto JK (eds) Compendium of grape diseases, disorders, and pests. APS Press, St. Paul, MN, pp 46–52
  • Keller B, Feuillet C, Messmer M (2000) Genetics of disease resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Springer, Dordrecht, Netherlands, pp 101–160. https://doi.org/10.1007/978-94-011-3937-3_5
  • Kellow AV (2004) Interaction between Vitis vinifera and grape phylloxera: changes in root tissue during nodosity formation. Ann Bot 93:581–590. https://doi.org/10.1093/aob/mch082
  • Kim ES, Chang EH, Hur YY, Kim TW, Jung SM (2015) Anthocyanin contents and composition of VlmybA1–2 and VlmybA2 genes in Vitis labrusca hybrid grape cultivars and cross seedlings. Plant Omics 8:472–478. https://doi.org/10.3316/INFORMIT.516994550945748
  • Kim GH, Yun HK, Choi CS, Park JH, Jung YJ et al (2008) Identification of AFLP and RAPD markers linked to anthracnose resistance in grapes and their conversion to SCAR markers. Plant Breed 127:418–423. https://doi.org/10.1111/j.1439-0523.2008.01488.x
  • Klein LL, Miller AJ, Ciotir C, Hyma K, Uribe-Convers S et al (2018) High-throughput sequencing data clarify evolutionary relationships among North American Vitis species and improve identification in USDA Vitis germplasm collections. Am J Bot 105:215–226. https://doi.org/10.1002/ajb2.1033
  • Kofler N, Collins JP, Kuzma J, Marris E, Esvelt K et al (2018) Editing nature: local roots of global governance. Science 362:527–529. https://doi.org/10.1126/science.aat4612
  • Koleda I (1975) Ergebnisse von Kreuzungen zwischen Vitis amurensis und Vitis vinifera in der Züchtung frostwiderstandsfähiger Reben. VITIS J Grapevine Res 14:1–5
  • Kono A, Sato A, Nakano M, Yamada M, Mitani N et al (2012) Evaluating grapevine cultivars for resistance to anthracnose based on lesion number and length. Am J Enol Vitic 63:262–268. https://doi.org/10.5344/ajev.2012.11109
  • Kono A, Sato A, Ban Y, Mitani N (2013) Resistance of Vitis germplasm to Elsinoë ampelina (de Bary) Shear evaluated by lesion number and diameter. HortScience 48:1433–1439. https://doi.org/10.21273/hortsci.48.12.1433
  • Kono A, Ban Y, Mitani N, Fujii H, Sato S et al (2018) Development of SSR markers linked to QTL reducing leaf hair density and grapevine downy mildew resistance in Vitis vinifera. Mol Breed 38:138. https://doi.org/10.1007/s11032-018-0889-8
  • Koopman T, Linde CC, Fourie PH, Mcleod A (2007) Population genetic structure of Plasmopara viticola in the Western Cape province of South Africa. Mol Plant Pathol 8:723–736. https://doi.org/10.1111/j.1364-3703.2007.00429.x
  • Korbuly J (2000) Results of breeding for resistance to winter frosts and different pathogens using Vitis amurensis. Acta Hortic 528:551–557. https://doi.org/10.17660/ActaHortic.2000.528.80
  • Kortekamp A, Wind R, Zyprian E (1998) Investigation of the interaction of Plasmopara viticola with susceptible and resistant grapevine cultivars. J Plant Dis Prot 105:475–488. https://www.jstor.org/stable/43386544
  • Krivanek AF, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1 a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131. https://doi.org/10.1007/s00122-006-0214-5
  • Kruger DHM, Fourie JC, Malan AP (2015) The effect of cover crops and their management on plant-parasitic nematodes in vineyards. South African J Enol Vitic 36(2):195–209
  • Kuczmog A, Galambos A, Horváth S, Mátai A, Kozma P et al (2012) Mapping of crown gall resistance locus Rcg1 in grapevine. Theor Appl Genet 125:1565–1574. https://doi.org/10.1007/s00122-012-1935-2
  • Kui L, Tang M, Duan S, Wang S, Dong X (2020) Identification of selective sweeps in the domesticated table and wine grape (Vitis vinifera L.). Front Plant Sci 11:e00572. https://doi.org/10.3389/fpls.2020.00572
  • Kulakiotu EK, Thanassoulopoulos CC, Sfakiotakis EM (2004) Postharvest biological control of Botrytis cinerea on kiwifruit by volatiles of “Isabella” grapes. Phytopathology 94:1280–1285. https://doi.org/10.1094/PHYTO.2004.94.12.1280
  • Kumar J, Pratap A, Kumar S (2015) Plant phenomics: an overview. In: Kumar J, Pratap A, Kumar S (eds) Phenomics in crop plants: trends, options and limitations. Springer, New Delhi, India. https://doi.org/10.1007/978-81-322-2226-2_1
  • Kunde RM, Lider LA, Schmitt RV (1968) A test of Vitis resistance to Xiphinema index. Am J Enol Vitic 19:30–36
  • Kuzmanović N, Biondi E, Overmann J, Puławska J, Verbarg S et al (2020) Revisiting the taxonomy of Allorhizobium vitis (i.e. Agrobacterium vitis) using genomics - emended description of all vitis sensu stricto and description of Allorhizobium ampelinum sp. nov. bioRxiv. https://doi.org/10.1101/2020.12.19.423612
  • Kyrkou I, Pusa T, Ellegaard-Jensen L, Sagot MF, Hansen LH (2018) Pierce’s disease of grapevines: a review of control strategies and an outline of an epidemiological model. Front Microbiol 9:1–23. https://doi.org/10.3389/fmicb.2018.02141
  • Lacombe T, Boursiquot J-M, Laucou V, Di Vecchi-Staraz M, Péros J-P et al (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414. https://doi.org/10.1007/s00122-012-1988-2
  • Lai G, Fu P, Liu Y, Xiang J, Lu J (2018) Molecular characterization and overexpression of VpRPW8s from Vitis pseudoreticulata enhances resistance to Phytophthora capsici in Nicotiana benthamiana. Int J Mol Sci 19(3):839. https://doi.org/10.3390/ijms19030839
  • Laimer M, Lemaire O, Herrbach E, Goldschmidt V, Minafra A et al (2009) Resistance to viruses, phytoplasmas and their vectors in the grapevine in Europe: a review. J Plant Pathol 91:7–23. https://doi.org/10.4454/jpp.v91i1.620
  • Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18:124. https://doi.org/10.1186/s13059-017-1263-6
  • Landi L, Murolo S, Romanazzi G (2012) Colonization of Vitis spp. wood by sGFP-transformed Phaeomoniella chlamydospora, a tracheomycotic fungus involved in esca disease. Phytopathology 102:290–297. https://doi.org/10.1094/PHYTO-06-11-0165
  • Laucou V, Lacombe T, Dechesne F, Siret R, Bruno J-PP et al (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245. https://doi.org/10.1007/s00122-010-1527-y
  • Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon A-F et al (2018) Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE 13:27. https://doi.org/10.1371/journal.pone.0192540
  • Lawo NC, Weingart GJF, Schuhmacher R, Forneck A (2011) The volatile metabolome of grapevine roots: first insights into the metabolic response upon phylloxera attack. Plant Physiol Biochem 49:1059–1063. https://doi.org/10.1016/j.plaphy.2011.06.008
  • Lawrence DP, Travadon R, Baumgartner K (2015) Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in Northern California. Mycologia 107:926–940. https://doi.org/10.3852/14-353
  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T et al (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8:31. https://doi.org/10.1186/1471-2229-8-31
  • Le Paslier M-C, Choisne N, Bacilieri R, Bounon R, Boursiquot J-M et al (2013) The GrapeReSeq 18k Vitis genotyping chip. In: 9th international symposium grapevine physiology and biotechnology. International Society for Horticultural Science, La Serena Chile, p 123
  • Lecomte P, Darrieutort G, Liminana JM, Comont G, Muruamendiaraz A et al (2012) New insights into esca of grapevine: the development of foliar symptoms and their association with xylem discoloration. Plant Dis 96:924–934. https://doi.org/10.1094/PDIS-09-11-0776-RE
  • Lee JC, Wang X, Daane KM, Hoelmer KA, Isaacs R et al (2019) Biological control of spotted-wing Drosophila (Diptera: Drosophilidae)-current and pending tactics. J Integr Pest Manag 10(1):13. https://doi.org/10.1093/jipm/pmz012
  • Lesuthu P, Mostert L, Spies CFJ, Moyo P, Regnier T et al (2019) Diaporthe nebulae sp. nov. and first report of D. cynaroidis, D. novem, and D. serafiniae on grapevines in South Africa. Plant Dis 103:808–817. https://doi.org/10.1094/PDIS-03-18-0433-RE
  • Li H (1993) Studies on the resistance of grapevine to powdery mildew. Plant Pathol 42:792–796. https://doi.org/10.1111/j.1365-3059.1993.tb01566.x
  • Li H-Y, Yang G-D, Shu H-R, Yang Y-T, Ye B-X et al (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III Chitin. Plant Cell Physiol 47:154–163. https://doi.org/10.1093/pcp/pci231
  • Li D, Wan Y, Wang Y, He P (2008) Relatedness of resistance to anthracnose and to white rot in Chinese wild grapes. VITIS J Grapevine Res 47:213–215. https://doi.org/10.5073/vitis.2008.47.213-215
  • Li D (2014) The history of Chinese winegrowing and winemaking-part 2. Decant China
  • Li X, Yin L, Ma L, Zhang Y, An Y et al (2016) Pathogenicity variation and population genetic structure of Plasmopara viticola in China. J Phytopathol 164:863–873. https://doi.org/10.1111/jph.12505
  • Li Z, Fan Y, Chang P, Gao L, Wang X (2020) Genome sequence resource for Elsinoë ampelina, the causal organism of grapevine anthracnose. Mol Plant-Microbe Interact 33:576–579. https://doi.org/10.1094/MPMI-12-19-0337-A
  • Liang ZC, Duan SC, Sheng J, Zhu SS, Ni XM et al (2019) Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Commun 10:1190. https://doi.org/10.1038/s41467-019-09135-8
  • Lijavetzky D, Cabezas J, Ibáñez A, Rodríguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424. https://doi.org/10.1186/1471-2164-8-424
  • Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:44–53
  • Limera C, Sabbadini S, Sweet JB, Mezzetti B (2017) New biotechnological tools for the genetic improvement of major woody fruit species. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.01418
  • Lin H, Islam MS, Morano L, Groves R, Bextine B et al (2013) Genetic variation of Xylella fastidiosa associated with grapevines in two major viticultural regions in the United States: California and Texas. J Plant Pathol 95:329–337. https://doi.org/10.4454/JPP.V95I2.028
  • Lin H (2017) Genetic analysis of Pierce’s disease resistant progeny of N18-6 x Flame seedless grapevine breeding population. In: Research progress reports: Pierce’s disease and other designated pests and diseases of winegrapes. California Department of Food and Agriculture, Sacramento, CA, p 148
  • Lin H, Leng H, Guo Y, Kondo S, Zhao Y et al (2019) QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. × V. amurensis Rupr.) crossing. Sci Hortic 244:200–207. https://doi.org/10.1016/j.scienta.2018.09.045
  • Lindow S, Newman K, Chatterjee S, Baccari C, Lavarone AT et al (2014) Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce’s disease. Mol Plant-Microbe Interact 27:244–254. https://doi.org/10.1094/MPMI-07-13-0197-FI
  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399. https://doi.org/10.1093/bioinformatics/bts444
  • Liu X-Q, Ickert-Bond SM, Nie Z-L, Zhou Z, Chen L-Q et al (2016a) Phylogeny of the Ampelocissus-Vitis clade in Vitaceae supports the New World origin of the grape genus. Mol Phylogenet Evol 95:217–228. https://doi.org/10.1016/j.ympev.2015.10.013
  • Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016b) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLOS Genet 12:e1005767. https://doi.org/10.1371/journal.pgen.1005767
  • Liu J, Yang C, Shi X, Li C, Huang J et al (2016c) Analyzing association mapping in pedigree-based GWAS using a penalized multitrait mixed model. Genet Epidemiol 40:382–393. https://doi.org/10.1002/gepi.21975
  • Liu S, Zhang C, Chao N, Lu J, Zhang Y (2018) Cloning, characterization, and functional investigation of VaHAESA from Vitis amurensis inoculated with Plasmopara viticola. Int J Mol Sci 19(4):1204. https://doi.org/10.3390/ijms19041204
  • Liu M, Ma F, Wu F, Jiang C, Wang Y (2019) Expression of stilbene synthase VqSTS6 from wild Chinese Vitis quinquangularis in grapevine enhances resveratrol production and powdery mildew resistance. Planta 250:1997–2007. https://doi.org/10.1007/s00425-019-03276-2
  • Loose S, Pabst E (2019) ProWein business report: “Climate Change”
  • Loose S (2020) ProWein business report: Covid-19 is the biggest challenge for the global wine industry
  • Loschiavo A, Sosnowski M, Wicks T (2007) Incidence of eutypa dieback in the Adelaide Hills. Aust New Zeal Grapegrow Winemak 08:26–29
  • Louime C, Lu J, Onokpise O, Vasanthaiah HKN, Kambiranda D et al (2011) Resistance to Elsinoë ampelina and expression of related resistant genes in Vitis rotundifolia Michx. grapes. Int J Mol Sci 12:3473–3488. https://doi.org/10.3390/ijms12063473
  • Lovato A, Zenoni S, Tornielli GB, Colombo T, Vandelle E et al (2019) Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea. Data Br 25:104150. https://doi.org/10.1016/j.dib.2019.104150
  • Lu J, Liu C (2015) Grapevine breeding in China. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Woodhead Publishing, Sawston, UK, pp 273–310. https://doi.org/10.1016/B978-1-78242-075-0.00012-0
  • Lu W, Newlands NK, Carisse O, Atkinson DE, Cannon AJ (2020) Disease risk forecasting with Bayesian learning networks: application to grape powdery mildew (Erysiphe necator) in vineyards. Agronomy 10:1–29. https://doi.org/10.3390/agronomy10050622
  • Lü P, Yu S, Zhu N, Chen YR, Zhou B et al (2018) Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat Plants 4:784–791. https://doi.org/10.1038/s41477-018-0249-z
  • Lund K, Riaz S, Walker MA (2017) Population structure, diversity and reproductive mode of the grape phylloxera (Daktulosphaira vitifoliae) across its native range. PLoS ONE 12:1–21. https://doi.org/10.1371/journal.pone.0170678
  • Luttrell ES (1946) Black rot of muscadine grapes. Phytopathology 36:905–926
  • Luttrell ES (1948) Physiologic specialization in Guignardia bidwellii, cause of black rot of Vitis and Parthenocissus species. Phytopathology 38:716–723
  • Ma H, Xiang G, Li Z, Wang Y, Dou M et al (2018) Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. Plant Biotechnol J 16(8):1488–1501. https://doi.org/10.1111/pbi.12891
  • Maddalena G, Delmotte F, Bianco PA, De Lorenzis G, Toffolatti SL (2020) Genetic structure of Italian population of the grapevine downy mildew agent, Plasmopara viticola. Ann Appl Biol 176:257–267. https://doi.org/10.1111/aab.12567
  • Magris G, Di Gaspero G, Marroni F, Zenoni S, Tornielli GB et al (2019) Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties. Plant J 99:895–909. https://doi.org/10.1111/tpj.14370
  • Mahanil S, Ramming D, Cadle-Davidson M, Owens C, Garris A et al (2012) Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor Appl Genet 124:23–33. https://doi.org/10.1007/s00122-011-1684-7
  • Maia M, Ferreira AEN, Nascimento R, Monteiro F, Traquete F et al (2020) Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Sci Rep 10:1–15. https://doi.org/10.1038/s41598-020-72781-2
  • Malagnini V, de Lillo E, Saldarelli P, Beber R, Duso C et al (2016) Transmission of Grapevine Pinot gris Virus by Colomerus vitis (Acari: Eriophyidae) to grapevine. Arch Virol 161:2595–2599. https://doi.org/10.1007/s00705-016-2935-3
  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1–9. https://doi.org/10.3389/fpls.2016.01904
  • Manawasinghe IS, Dissanayake AJ, Li X, Liu M, Wanasinghe DN et al (2019) High genetic diversity and species complexity of diaporthe associated with grapevine dieback in China. Front Microbiol 10:1–28. https://doi.org/10.3389/fmicb.2019.01936
  • Mansour R, Belzunces LP, Suma P, Zappalà L, Mazzeo G et al (2018) Vine and citrus mealybug pest control based on synthetic chemicals. A review. Agron Sustain Dev 38:1–20. https://doi.org/10.1007/s13593-018-0513-7
  • Maraš V, Tello J, Gazivoda A, Mugoša M, Perišić M et al (2020) Population genetic analysis in old Montenegrin vineyards reveals ancient ways currently active to generate diversity in Vitis vinifera. Sci Rep 10:15000. https://doi.org/10.1038/s41598-020-71918-7
  • Marchi G (2001) Susceptibility to esca of various grapevine (Vitis vinifera) cultivars grafted on different rootstocks in a vineyard in the province of Siena (Italy). Phytopathol Mediterr 40:27–36. https://doi.org/10.14601/Phytopathol_Mediterr-1589
  • Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G et al (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278. https://doi.org/10.1007/s00122-009-0979-4
  • Marrano A, Birolo G, Prazzoli ML, Lorenzi S, Valle G et al (2017) SNP-discovery by RAD-sequencing in a germplasm collection of wild and cultivated grapevines (V. vinifera L.). PLoS ONE 12:19. https://doi.org/10.1371/journal.pone.0170655
  • Martelli GP, Taylor CE (1990) Distribution of viruses and their nematode vectors. In: Harris KF (ed) Advances in disease vector research, vol 6. Springer, New York, NY, pp 151–189. https://doi.org/10.1007/978-1-4612-3292-6_6
  • Martelli GP (1997) Infectious diseases and certification of grapevines. In: Martelli GP, Digiaro M (eds) Mediterranean network on grapevine Closteroviruses 1992–1997 and the viroses and virus-like diseases of the grapevine a bibliographic report, 1985–1997. Options Méditerranéennes Série B. Etudes et Recherches n. 29. CHIEAM, Bari, Italy, pp 47–64
  • Martelli GP, Abou Ghanem-Sabanadzovic N, Agranovsky AA, Al Rwahnih M, Dolja VV et al (2012) Taxonomic revision of the family closteroviridae with special reference to the grapevine leafroll-associated members of the genus Ampelovirus and the putative species unassigned to the family. J Plant Pathol 94:7–19. https://doi.org/10.4454/jpp.fa.2012.022
  • Martelli GP (2014) Directory of virus and virus-like diseases of the grapevine and their agents. J Plant Pathol 96:1–4
  • Martelli GP (2017) An overview on grapevine viruses, viroids, and the diseases they cause. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Cham, Switzerland, pp 31–46. https://doi.org/10.1007/978-3-319-57706-7_2
  • Martín L, Sáenz de Miera LE, Martín MT (2014) AFLP and RAPD characterization of Phaeoacremonium aleophilum associated with Vitis vinifera decline in Spain. J Phytopathol 162:245–257. https://doi.org/10.1111/jph.12180
  • Martinelli L, Gribaudo I (2001) Somatic embryogenesis in Grapevine. In: Molecular biology & biotechnology of the grapevine. Springer, Dordrecht, Netherlands, pp 327–351. https://doi.org/10.1007/978-94-017-2308-4_13
  • Martinez MC, Perez JE (1995) “Catalan Blanco”, “Catalan Roxo”, “Folla Redonda”: Vitis vinifera L. o hibridos productores directo? Investig Agrar: Prod Prot Veg 10:5–14
  • Martínez-Diz M del P, Díaz-Losada E, Barajas E, Ruano-Rosa D, Andrés-Sodupe M et al (2019) Screening of Spanish Vitis vinifera germplasm for resistance to Phaeomoniella chlamydospora. Sci Hortic 246:104–109. https://doi.org/10.1016/j.scienta.2018.10.049
  • Martínez-Diz MP, Díaz-Losada E, Díaz-Fernández Á, Bouzas-Cid Y, Gramaje D (2021a) Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop Prot 143:125. https://doi.org/10.1016/j.cropro.2020.105465
  • Martínez-Diz MP, Díaz-Losada E, Andrés-Sodupe M, Bujanda R, Maldonado-González MM et al (2021b) Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine. Pest Manag Sci 77:697–708. https://doi.org/10.1002/ps.6064
  • Matsoukas IG (2020) Prime editing: genome editing for rare genetic diseases without double-strand breaks or donor DNA. Front Genet 11:1–6. https://doi.org/10.3389/fgene.2020.00528
  • Maul E, Sudharma KN, Kecke S, Marx G, Müller C et al (2012) The European *Vitis* database (www.eu-vitis-de)-a technical innovation through an online uploading and interactive modification system. VITIS J Grapevine Res 51:79–85. https://doi.org/10.5073/vitis.2012.51.79-85
  • Maul E et al (2021) Vitis International Variety Catalogue. www.vivc.de
  • Mazzoni V, Ioriatti C, Trona F, Lucchi A, De Cristofaro A et al (2009a) Study on the role of olfaction in host plant detection of Scaphoideus titanus (Hemiptera: Cicadellidae) Nymphs. J Econ Entomol 102:974–980. https://doi.org/10.1603/029.102.0316
  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009b) Reproductive strategy of the nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413. https://doi.org/10.1017/S0007485308006408
  • Mazzoni V, Nieri R, Eriksson A, Virant-Doberlet M, Polajnar J et al (2019) Mating disruption by vibrational signals: state of the field and perspectives. In: Hill PSM, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M et al (eds) Biotremology: studying vibrational behavior, vol 6. Springer, Cham, Switzerland, pp 331–354. https://doi.org/10.1007/978-3-030-22293-2_17
  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379. https://doi.org/10.1146/annurev.phyto.40.120501.101443
  • Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553–3563. https://doi.org/10.1038/emboj.2011.274
  • Meloni G, Swinnen J (2013) The political economy of European wine regulations. J Wine Econ 8:244–284. https://doi.org/10.1017/jwe.2013.33
  • Meng B, Martelli GP, Golino DA, Fuchs M (2017) Grapevine viruses: molecular biology, diagnostics and management. Springer, Cham, Switzerland https://doi.org/10.1007/978-3-319-57706-7
  • Mercier A, Carpentier F, Duplaix C, Auger A, Pradier JM et al (2019) The polyphagous plant pathogenic fungus Botrytis cinerea encompasses host-specialized and generalist populations. Environ Microbiol 21:4808–4821. https://doi.org/10.1111/1462-2920.14829
  • Merdinoglu D, Wiedeman-Merdinoglu S, Coste P, Dumas V, Haetty S et al (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603_57:451–456. https://doi.org/10.17660/ActaHortic.2003.603.57
  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon A-F et al (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366. https://doi.org/10.1007/s11032-004-7651-0
  • Merdinoglu D, Schneider C, Prado E, Wiedemann-Merdinoglu S, Mestre P (2018) Breeding for durable resistance to downy and powdery mildew in grapevine. OENO One 52:203–209. https://doi.org/10.20870/oeno-one.2018.52.3.2116
  • Migicovsky Z, Sawler J, Money D, Eibach R, Miller AJ et al (2016) Genomic ancestry estimation quantifies use of wild species in grape breeding. BMC Genomics 17:478. https://doi.org/10.1186/s12864-016-2834-8
  • Migliaro D, De Lorenzis G, Di Lorenzo GS, De Nardi B, Gardiman M et al (2019) Grapevine non-vinifera genetic diversity assessed by simple sequence repeat markers as a starting point for new rootstock breeding programs. Am J Enol Vitic 70:390–397. https://doi.org/10.5344/ajev.2019.18054
  • Miller AJ, Matasci N, Schwaninger H, Aradhya MK, Prins B et al (2013) Vitis phylogenomics: hybridization intensities from a SNP array outperform genotype calls. PLoS ONE 8:e78680. https://doi.org/10.1371/journal.pone.0078680
  • Minio A, Lin J, Gaut BS, Cantu D (2017) How single molecule real-time sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00826
  • Minio A, Massonnet M, Figueroa-Balderas R, Vondras AM, Blanco-Ulate B et al (2019a) Iso-Seq allows genome-independent transcriptome profiling of grape berry development. G3 Genes|Genomes|Genetics 9:755–767. https://doi.org/10.1534/g3.118.201008
  • Minio A, Massonnet M, Figueroa-Balderas R, Castro A, Cantu D (2019b) Diploid genome assembly of the wine grape Carménère. G3 Genes|Genomes|Genetics 9:1331–1337. https://doi.org/10.1534/g3.119.400030
  • Mirica I (1988) Anthracnose. In: Pearson RC, Goheen AC (eds) Compendium of grape diseases. APS Press, St. Paul, MN, pp 18–19. https://doi.org/10.1094/9780890544815
  • Modesto LR, Steiner DRM, Menon JK, Nodari RO, Welter LJ et al (2020) Standard area diagram set for anthracnose severity on grapevine bunches and shoots. Australas Plant Pathol 49:561–569. https://doi.org/10.1007/s13313-020-00728-2
  • Molina A, Miedes E, Bacete L et al (2021) Arabidopsis cell wall composition determines disease resistance specificity and fitness. Proc Natl Acad Sci 118:e2010243118. https://doi.org/10.1073/pnas.2010243118
  • Molitor D, Beyer M (2014) Epidemiology, identification and disease management of grape black rot and potentially useful metabolites of black rot pathogens for industrial applications-a review. Ann Appl Biol 165:305–317. https://doi.org/10.1111/aab.12155
  • Moralejo E, Borràs D, Gomila M, Montesinos M, Adrover F et al (2019) Insights into the epidemiology of Pierce’s disease in vineyards of Mallorca, Spain. Plant Pathol 68:1458–1471. https://doi.org/10.1111/ppa.13076
  • Morales-Cruz A, Amrine KC, Blanco-Ulate B, Lawrence DP, Travadon R et al (2015) Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens. BMC Genomics 16:469. https://doi.org/10.1186/s12864-015-1624-z
  • Morán F, Olmos A, Lotos L, Predajňa L, Katis N et al (2018) A novel specific duplex real-time RT-PCR method for absolute quantitation of Grapevine Pinot gris Virus in plant material and single mites. PLoS ONE 13:1–14. https://doi.org/10.1371/journal.pone.0197237
  • Moreira FM, Madini A, Marino R, Zulini L, Stefanini M et al (2011) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize Quantitative Trait Loci for downy mildew resistance. Tree Genet Genomes 7:153–167. https://doi.org/10.1007/s11295-010-0322-x
  • Moretto M, Sonego P, Pilati S, Malacarne G, Costantini L et al (2016) VESPUCCI: exploring patterns of gene expression in grapevine. Front Plant Sci 7:633. https://doi.org/10.3389/fpls.2016.00633
  • Moroldo M, Paillard S, Marconi R, Fabrice L, Canaguier A et al (2008) A physical map of the heterozygous grapevine “Cabernet Sauvignon” allows mapping candidate genes for disease resistance. BMC Plant Biol 8:66. https://doi.org/10.1186/1471-2229-8-66
  • Mortensen JA (1981) Sources and inheritance of resistance to anthracnose in Vitis. J Hered 72:423–426. https://doi.org/10.1093/oxfordjournals.jhered.a109545
  • Mosa KA, Ismail A, Helmy M (2017) Omics and system biology approaches in plant stress research. In: Plant stress tolerance: an integrated omics approach. Springer, Cham, Switzerland, pp 21–34. https://doi.org/10.1007/978-3-319-59379-1_2
  • Mostert L, Crous PW, Kang J-C, Phillips AJL (2001) Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 93:146–167. https://doi.org/10.1080/00275514.2001.12061286
  • Mugnai L, Graniti A, Surico G (1999) Esca (Black measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Dis 83:404–418. https://doi.org/10.1094/PDIS.1999.83.5.404
  • Mullins MG, Rajasekaran K (1981) Fruiting cuttings: revised method for producing test plants of grapevine cultivars. Am J Enol Vitic 23:35–40
  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455. https://doi.org/10.1016/j.meegid.2014.01.011
  • Mundt CC (2018) Pyramiding for resistance durability: theory and practice. Phytopathology 108:792–802. https://doi.org/10.1094/PHYTO-12-17-0426-RVW
  • Murolo S, Romanazzi G (2014) Effects of grapevine cultivar, rootstock and clone on esca disease. Australas Plant Pathol 43:215–221. https://doi.org/10.1007/s13313-014-0276-9
  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202. https://doi.org/10.1105/tpc.109.068437
  • Myles S, Chia J-M, Hurwitz B, Simon C, Zhong GY et al (2010) Rapid genomic characterization of the genus Vitis. PLoS ONE 5:e8219. https://doi.org/10.1371/journal.pone.0008219
  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F et al (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3457–3458. https://doi.org/10.1073/pnas.1009363108
  • Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH (2013) Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proc Natl Acad Sci USA 110:16663–16668. https://doi.org/10.1073/pnas.1220219110
  • Naegele RP (2018) Evaluation of host resistance to Botrytis bunch rot in Vitis spp. and its correlation with Botrytis leaf spot. HortScience 53:204–207. https://doi.org/10.21273/HORTSCI12655-17
  • Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T et al (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE 12:1–16. https://doi.org/10.1371/journal.pone.0177966
  • Namba S (2019) Molecular and biological properties of phytoplasmas. Proc Jpn Acad Ser B 95:401–418. https://doi.org/10.2183/pjab.95.028
  • Näpflin K, O’Connor EA, Becks L, Bensch S, Ellis VA et al (2019) Genomics of host-pathogen interactions: challenges and opportunities across ecological and spatiotemporal scales. PeerJ 7:e8013. https://doi.org/10.7717/peerj.8013
  • Narduzzi-Wicht B, Jermini M, Gessler C, Broggini GAL (2014) Microsatellite markers for population studies of the ascomycete Phyllosticta ampelicida, the pathogen causing grape black rot. Phytopathol Mediterr 53:470–479. https://doi.org/10.14601/phytopathol_mediterr-14481
  • Nascimento-Gavioli MCA, Rockenbach MF, Welter LJ, Guerra MP (2020) Histopathological study of resistant (Vitis labrusca L.) and susceptible (Vitis vinifera L.) cultivars of grapevine to the infection by downy mildew. J Hortic Sci Biotechnol 95:521–531. https://doi.org/10.1080/14620316.2019.1685411
  • Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ et al (2016) Melatonin: current status and future perspectives in plant science. Front Plant Sci 6:1–13. https://doi.org/10.3389/fpls.2015.01230
  • Negrul AM (1946) Origin of cultivated grapevine and its classification. In: Frolov-Bagreev AM (ed) Ampelography of the Soviet Union, Moscow, Pishchepromizdat, pp 159–216
  • Negrel L, Halter D, Wiedemann-Merdinoglu S, Rustenholz C, Merdinoglu D et al (2018) Identification of lipid markers of Plasmopara viticola infection in grapevine using a non-targeted metabolomic approach. Front Plant Sci 9:360. https://doi.org/10.3389/fpls.2018.00360
  • Nguyen VC, Villate L, Gutierrez-Gutierrez C, Castillo P, Van Ghelder C et al (2019) Phylogeography of the soil-borne vector nematode Xiphinema index highly suggests Eastern origin and dissemination with domesticated grapevine. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-43812-4
  • Nguyen VC, Tandonnet J-P, Khallouk S, Van Ghelder C, Portier U et al (2020) Grapevine resistance to the nematode Xiphinema index is durable in muscadine-derived plants obtained from hardwood cuttings but not from in vitro. Phytopathology 110:1565–1571. https://doi.org/10.1094/PHYTO-01-20-0008-R
  • Nicol JM, Stirling GR, Rose BJ, May P, Heeswijck R (1999) Impact of nematodes on grapevine growth and productivity: current knowledge and future directions, with special reference to Australian viticulture. Aust J Grape Wine Res 5:109–127. https://doi.org/10.1111/j.1755-0238.1999.tb00295.x
  • Nicolas SD, Péros J-P, Lacombe T, Launay A, Le Paslier M-C et al (2016) Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol 16:74. https://doi.org/10.1186/s12870-016-0754-z
  • Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Do KK et al (2016) Widespread natural variation of DNA methylation within angiosperms. Genome Biol 17:194. https://doi.org/10.1186/s13059-016-1059-0
  • Nieri R, Anfora G, Mazzoni V, Rossi Stacconi MV (2021) Semiochemicals, semiophysicals and their integration for the development of innovative multi-modal systems for agricultural pests’ monitoring and control. Entomol Gen. https://doi.org/10.1127/entomologia/2021/1236
  • Niks RE, Rubiales D (2002) Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica 124:201–216. https://doi.org/10.1023/A:1015634617334
  • Nita M, Ellis MA, Wilson LL, Madden LV (2006) Evaluation of a disease warning system for Phomopsis cane and leaf spot of grape: a field study. Plant Dis 90:1239–1246. https://doi.org/10.1094/PD-90-1239
  • Ocarez N, Jiménez N, Núñez R, Perniola R, Marsico AD et al (2020) Unraveling the deep genetic architecture for seedlessness in grapevine and the development and validation of a new set of markers for VviAGL11- based gene-assisted selection. Genes (basel) 11:151. https://doi.org/10.3390/genes11020151
  • Ochssner I, Hausmann L, Töpfer R (2016) Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea. VITIS J Grapevine Res 55:79–81. https://doi.org/10.5073/vitis.2016.55.79-81
  • OIV (2009) 2nd edition of the OIV Descriptor list for grape varieties and Vitis species
  • OIV (2017) Focus OIV 2017 Distribution of the world’s grapevine varieties. OIV-International organization of vine and wine, Paris, France
  • OIV (2020) 2020 Wine prodution-OIV First Estimates. Int Organ Vine Wine, pp 1–8
  • OIV-MA-AS315-03; 377/2009 (2009) Malvidin diglucoside. In: Compendium of international methods of analysis. https://www.oiv.int/public/medias/2530/oiv-ma-as315-03.pdf
  • OIV-VITI 1-1991 (1991) Clonal Selection. In: Resolution OIV-VITI 1-1991
  • OIV-VITI 564A-2017 (2017) OIV Process for the clonal selection of vines
  • OIV-VITI 564B-2019 OIV process for the recovery and conservation of the intravarietal diversity and the polyclonal selection of the vine in grape varieties with wide genetic variability
  • Oliver JE, Fuchs M (2011) Tolerance and resistance to viruses and their vectors in Vitis sp.: a virologist’s perspective of the literature. Am J Enol Vitic 62:438–451. https://doi.org/10.5344/ajev.2011.11036
  • Ollat N, Claverie M, Esmenjaud D, Demangeat G, Jacquet O (2011) Dossier Vigne: Un porte-greffe pour lutter contre le court-noué. Phytoma-La Défense Des Végétaux 649:29–33
  • Ollat N, Peccoux A, Papura D, Esmenjaud D, Marguerit E et al (2016) Rootstocks as a component of adaptation to environment. In: Gerós H, Chaves MM, Gil HM, Delrot S (eds) Grapevine in a changing environment. John Wiley & Sons, Ltd., Hoboken, NJ, pp 68–108. https://doi.org/10.1002/9781118735985.ch4
  • Olmo HP (1976) Grapes. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, UK, pp 294–298
  • Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S et al (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757. https://doi.org/10.1093/gbe/evt034
  • Onesti G, González-Domínguez E, Rossi V (2016) Accurate prediction of black rot epidemics in vineyards using a weather-driven disease model. Pest Manag Sci 72:2321–2329. https://doi.org/10.1002/ps.4277
  • Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H et al (2015) Taxonomy of rhizobia and Agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38:287–291. https://doi.org/10.1016/j.syapm.2014.12.002
  • Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K et al (2018) CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13:2844–2863. https://doi.org/10.1038/s41596-018-0067-9
  • Ouantar M, Anfora G, Bouharoud R, Chebli B (2020) First report of Drosophila suzukii (Diptera: Drosophiladae) in North Africa. Moroccan J Agric Sci 1:277–279
  • Pacifico D, Gaiotti F, Giusti M, Tomasi D (2013) Performance of interspecific grapevine varieties in North-East Italy. Agric Sci 04:91–101. https://doi.org/10.4236/as.2013.42015
  • Palmieri MC, Perazzolli M, Matafora V, Moretto M, Bachi A et al (2012) Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. J Exp Bot 63:6237–6251. https://doi.org/10.1093/jxb/ers279
  • Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC et al (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16:1–19. https://doi.org/10.1186/s12870-016-0855-8
  • Papura D, Burban C, van Helden M, Giresse X, Nusillard B et al (2012) Microsatellite and mitochondrial data provide evidence for a single major introduction for the neartic leafhopper Scaphoideus titanus in Europe. PLoS ONE 7:e36882. https://doi.org/10.1371/journal.pone.0036882
  • Paris M, Boyer R, Jaenichen R, Wolf J, Karageorgi M et al (2020) Near-chromosome level genome assembly of the fruit pest Drosophila suzukii using long-read sequencing. Sci Rep 10:11227. https://doi.org/10.1038/s41598-020-67373-z
  • Patel S, Robben M, Fennell A, Londo JP, Alahakoon D et al (2020) Draft genome of the Native American cold hardy grapevine Vitis riparia Michx. ‘Manitoba 37.’ Hortic Res 7:92. https://doi.org/10.1038/s41438-020-0316-2
  • Patil SG, Honrao BK, Karkamar S (1998) Reaction of grape germplasm against rust diseases. J Maharashtra Agric Univ 23:138–140
  • Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210. https://doi.org/10.1007/s001220100664
  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12. https://doi.org/10.1007/s11032-009-9323-6
  • Pavan S, Delvento C, Ricciardi L, Lotti C, Ciani E et al (2020) Recommendations for choosing the genotyping method and best practices for quality control in crop genome-wide association studies. Front Genet 11:447. https://doi.org/10.3389/fgene.2020.00447
  • Pavloušek P (2012) Evaluation of foliar resistance of grapevine genetic resources to downy mildew (Plasmopara viticola). Acta Univ Agric Silvic Mendelianae Brun 60:191–198. https://doi.org/10.11118/actaun201260080191
  • Peleman JD, Sørensen AP, van der Voort JR (2005) Breeding by design: exploiting genetic maps and molecular markers through marker-assisted selection. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 109–129. https://doi.org/10.1002/3527603514.ch5
  • Pennington T, Kraus C, Alakina E, Entling M, Hoffmann C (2017) Minimal pruning and reduced plant protection promote predatory mites in Grapevine. Insects 8:86. https://doi.org/10.3390/insects8030086
  • Perazzolli M, Palmieri MC, Matafora V, Bachi A, Pertot I (2016) Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine. J Plant Physiol 195:59–72. https://doi.org/10.1016/j.jplph.2016.03.007
  • Peressotti E, Wiedemann-Merdinoglu S, Delmotte F, Bellin D, Di Gaspero G et al (2010) Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biol 10:147. https://doi.org/10.1186/1471-2229-10-147
  • Peros JP, Berger G, Portemont A, Boursiquot JM, Lacombe T (2011) Genetic variation and biogeography of the disjunct Vitis subg. Vitis (Vitaceae). J Biogeogr 38:471–486. https://doi.org/10.1111/j.1365-2699.2010.02410.x
  • Péros JP, Cousins P, Launay A, Cubry P, Walker A et al (2021) Genetic diversity and population structure in Vitis species illustrate phylogeographic patterns in Eastern North America. Mol Ecol 30:2333–2348. https://doi.org/10.1111/mec.15881
  • Pertot I, Caffi T, Rossi V, Mugnai L, Hoffmann C et al (2017) A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot 97:70–84. https://doi.org/10.1016/j.cropro.2016.11.025
  • Pertot I, Prodorutti D, Colombini A, Pasini L (2016) Trichoderma atroviride SC1 prevents Phaeomoniella chlamydospora and Phaeoacremonium aleophilum infection of grapevine plants during the grafting process in nurseries. Biocontrol 61:257–267. https://doi.org/10.1007/s10526-016-9723-6
  • Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L et al (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3:16016. https://doi.org/10.1038/hortres.2016.16
  • Piper MC, van Helden M, Court LN, Tay WT (2016) Complete mitochondrial genome of the European grapevine moth (EGVM) Lobesia botrana (Lepidoptera: Tortricidae). Mitochondrial DNA Part A 27:3759–3760. https://doi.org/10.3109/19401736.2015.1079893
  • Pirrello C, Mizzotti C, Tomazetti TC, Colombo M, Bettinelli P et al (2019) Emergent ascomycetes in viticulture: an interdisciplinary overview. Front Plant Sci 10:1–30. https://doi.org/10.3389/fpls.2019.01394
  • Pirrello C, Zeilmaker T, Bianco L, Giacomelli L, Moser C et al (2021) Mining grapevine downy mildew susceptibility genes: a resource for genomics-based breeding and tailored gene editing. Biomolecules 11:181. https://doi.org/10.3390/biom11020181
  • Poland JA, Nelson RJ (2011) In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping. Phytopathology 101:290–298. https://doi.org/10.1094/PHYTO-03-10-0087
  • Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M et al (2010) General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics 11:117. https://doi.org/10.1186/1471-2164-11-117
  • Poolsawat O, Tharapreuksapong A, Wongkaew S, Chaowiset W, Tantasawat P (2012) Laboratory and field evaluations of resistance to Sphaceloma ampelinum causing anthracnose in grapevine. Australas Plant Pathol 41:263–269. https://doi.org/10.1007/s13313-012-0127-5
  • Poolsawat O, Tharapreuksapong A, Wongkaew S, Reisch B, Tantasawat P (2010) Genetic diversity and pathogenicity analysis of Sphaceloma ampelinum causing grape anthracnose in Thailand. J Phytopathol 158:837–840. https://doi.org/10.1111/j.1439-0434.2010.01696.x
  • Possamai T, Wiedemann-Merdinoglu S, De Mori G, Cipriani G, Velasco R (2021) Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.). BMC Plant Biol 21:528. https://doi.org/10.1186/s12870-021-03174-4
  • Pouzoulet J, Scudiero E, Schiavon M, Rolshausen PE (2017) Xylem vessel diameter affects the compartmentalization of the vascular pathogen Phaeomoniella chlamydospora in grapevine. Front Plant Sci 8:1–13. https://doi.org/10.3389/fpls.2017.01442
  • Pouzoulet J, Rolshausen PE, Charbois R, Chen J, Guillaumie S et al (2020) Behind the curtain of the compartmentalization process: exploring how xylem vessel diameter impacts vascular pathogen resistance. Plant Cell Environ 43:2782–2796. https://doi.org/10.1111/pce.13848
  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma. Mycorrhizal and Endophytic Fungi. Front Microbiol 11:992. https://doi.org/10.3389/fmicb.2020.00992
  • Powell KS (2012) A holistic approach to future management of grapevine phylloxera. In: Bostanian N, Vincent C, Isaacs R (eds) Arthropod management in Vineyards: Springer, Dordrecht, Netherlands, pp 219–251. https://doi.org/10.1007/978-94-007-4032-7_10
  • Powell KS, Cooper PD, Forneck A (2013) The biology, physiology and host-plant interactions of grape phylloxera Daktulosphaira vitifoliae. In: Advances in insect physiology. Academic Press Inc., pp 45:159–218. https://doi.org/10.1016/B978-0-12-417165-7.00004-0
  • Pozharskiy AS, Aubakirova KP, Gritsenko DA, Tlevlesov NI, Karimov NZ et al (2020) Genotyping and morphometric analysis of Kazakhstani grapevine cultivars versus Asian and European cultivars. Genet Mol Res 19(1):gmr18482. https://doi.org/10.4238/gmr18482
  • Pozzebon A, Tirello P, Moret R, Pederiva M, Duso C (2015) A fundamental step in IPM on grapevine: evaluating the side effects of pesticides on predatory mites. Insects 6:847–857. https://doi.org/10.3390/insects6040847
  • Prajongjai T, Poolsawat O, Pombungkerd P, Wongkaew S, Tantasawat PA (2014) Evaluation of grapevines for resistance to Downy Mildew (Plasmopara viticola) under laboratory and field conditions. South African J Enol Vitic 35:43–50. https://doi.org/10.21548/35-1-983
  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795
  • Rahman MU, Ma Q, Ahmad B, Hanif M, Zhang Y (2020) Histochemical and microscopic studies predict that grapevine genotype “Ju mei gui” is highly resistant against Botrytis cinerea. Pathogens 9(4):253. https://doi.org/10.3390/pathogens9040253
  • Rameshgar F, Khajehali J, Nauen R, Bajda S, Jonckheere W et al (2019a) Point mutations in the voltage-gated sodium channel gene associated with pyrethroid resistance in Iranian populations of the European red mite Panonychus ulmi. Pestic Biochem Physiol 157:80–87. https://doi.org/10.1016/j.pestbp.2019.03.008
  • Rameshgar F, Khajehali J, Nauen R, Dermauw W, Van Leeuwen T (2019b) Characterization of abamectin resistance in Iranian populations of European red mite, Panonychus ulmi Koch (Acari: Tetranychidae). Crop Prot 125:104903. https://doi.org/10.1016/j.cropro.2019.104903
  • Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P et al (2011) A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101:502–508. https://doi.org/10.1094/PHYTO-09-10-0237
  • Ramming DW, Gabler F, Smilanick JL, Margosan D, Cadle-Davidson MM et al (2012) Identification of race-specific resistance in North American Vitis spp. limiting Erysiphe necator hyphal growth. Phytopathology 102:83–93. https://doi.org/10.1094/PHYTO-03-11-0062
  • Ramos-Madrigal J, Runge AKW, Bouby L, Lacombe T, Samaniego Castruita JA et al (2019) Palaeogenomic insights into the origins of French grapevine diversity. Nat Plants 5:595–603. https://doi.org/10.1038/s41477-019-0437-5
  • Ramsdell DC, Milholland RD (1988) Black rot. In: Pearson RC, Goheen AC (eds) Compendium of grape diseases. APS Press, St. Paul, MN, pp 15–16
  • Raski DJ, Hewitt WB, Goheen AC, Taylor CE, Taylor RH (1965) Survival of Xiphinema index and reservoirs of fanleaf virus in fallowed vineyard soil. Nematologica 11:349–352. https://doi.org/10.1163/187529265X00267
  • Reineke A, Assaf HA, Kulanek D, Mori N, Pozzebon A et al (2015) A novel set of microsatellite markers for the European grapevine moth Lobesia botrana isolated using next-generation sequencing and their utility for genetic characterization of populations from Europe and the Middle East. Bull Entomol Res 105:408–416. https://doi.org/10.1017/S0007485315000267
  • Ren C, Xu Z, Sun S, Lee M-K, Wu C, et al. (2005) Genomic DNA libraries and physical mapping. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 173–213. https://doi.org/10.1002/3527603514.ch8
  • Ren C, Liu X, Zhang Z, Wang Y, Duan W et al (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:1–9. https://doi.org/10.1038/srep32289
  • Ren C, Guo Y, Kong J, Lecourieux F, Dai Z et al (2020) Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biol 20:1–8. https://doi.org/10.1186/s12870-020-2263-3
  • Ren C, Liu Y, Guo Y, Duan W, Fan P et al (2021) Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Hortic Res 8:52. https://doi.org/10.1038/s41438-021-00489-z
  • Ren F, Ren C, Zhang Z, Duan W, Lecourieux D et al (2019) Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape. Front Plant Sci 10:1–8. https://doi.org/10.3389/fpls.2019.00612
  • Reustle G, Harst M, Alleweldt G (1994) Regeneration of grapevine (Vitis sp.) protoplasts. VITIS J Grapevine Res 33:173–174. https://doi.org/10.5073/vitis.1994.33.173-174
  • Rex F, Fechter I, Hausmann L, Töpfer R (2014) QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock “Börner” (V. riparia Gm183 × V. cinerea Arnold). Theor Appl Genet 127:1667–1677. https://doi.org/10.1007/s00122-014-2329-4
  • Reynolds AG, Reisch BI (2015) Grapevine breeding in the Eastern United States. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Elsevier, Woodhead Publishing, Sawston, UK, pp 345–358. https://doi.org/10.1016/B978-1-78242-075-0.00014-4
  • Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica. Theor Appl Genet 113:1317–1329. https://doi.org/10.1007/s00122-006-0385-0
  • Riaz S, Tenscher AC, Rubin J, Graziani R, Pao SS et al (2008) Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor Appl Genet 117:671–681. https://doi.org/10.1007/s00122-008-0802-7
  • Riaz S, Tenscher AC, Graziani R, Andrew Walker M (2008) Using marker-assisted selection to breed for Pierce's disease resistance in grape. Am J Enol Vitic 59:341
  • Riaz S, Tenscher AC, Graziani R, Krivanek AF, Ramming DW et al (2009) Using marker-assisted selection to breed Pierce’s disease-resistant grapes. Am J Enol Vitic 60:199–207
  • Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073. https://doi.org/10.1007/s00122-010-1511-6
  • Riaz S, Boursiquot J-M, Dangl GS, Lacombe T, Laucou V et al (2013) Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC Plant Biol 13:149. https://doi.org/10.1186/1471-2229-13-149
  • Riaz S, Lund KT, Granett J, Walker MA (2017) Population diversity of grape phylloxera in California and evidence for sexual reproduction. Am J Enol Vitic 68:218–227. https://doi.org/10.5344/ajev.2016.15114
  • Riaz S, Huerta-Acosta K, Tenscher AC, Walker MA (2018a) Genetic characterization of Vitis germplasm collected from the Southwestern US and Mexico to expedite Pierce’s disease-resistance breeding. Theor Appl Genet 131:1589–1602. https://doi.org/10.1007/s00122-018-3100-z
  • Riaz S, De Lorenzis G, Velasco D, Koehmstedt A, Maghradze D et al (2018b) Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol 18:137. https://doi.org/10.1186/s12870-018-1351-0
  • Riaz S, Pap D, Uretsky J, Laucou V, Boursiquot J-MM et al (2019) Genetic diversity and parentage analysis of grape rootstocks. Theor Appl Genet 132:1847–1860. https://doi.org/10.1007/s00122-019-03320-5
  • Riaz S, Menéndez CM, Tenscher A, Pap D, Walker MA (2020a) Genetic mapping and survey of powdery mildew resistance in the wild Central Asian ancestor of cultivated grapevines in Central Asia. Hortic Res 7. https://doi.org/10.1038/s41438-020-0335-z
  • Riaz S, Tenscher AC, Heinitz CC, Huerta-Acosta KG, Walker MA (2020b) Genetic analysis reveals an East-West divide within North American Vitis species that mirrors their resistance to Pierce’s disease. PLoS ONE 15:e0243445. https://doi.org/10.1371/journal.pone.0243445
  • Richter R, Gabriel D, Rist F, Töpfer R, Zyprian E (2019) Identification of co-located QTLs and genomic regions affecting grapevine cluster architecture. Theor Appl Genet 132:1159–1177. https://doi.org/10.1007/s00122-018-3269-1
  • Ridgman WJ (1991) The status of Eutypa lata as a Pathogen. CABI International, Wallingford, UK
  • Rilling G (1989) Differential response of grapevine cultivars to European red mite (Panonychus ulmi Koch) - elaboration of a screening method. VITIS J Grapevine Res 28(2):97–97. https://doi.org/10.5073/VITIS.1989.28.97-110
  • Rinaldi PA, Paffetti D, Comparini C, Broggini GAL, Gessler C et al (2017) Genetic variability of Phyllosticta ampelicida, the agent of black rot disease of grapevine. Phytopathology 107:1406–1416. https://doi.org/10.1094/PHYTO-11-16-0404-R
  • Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK et al (2020) The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biol 18:1–25. https://doi.org/10.1186/s12915-020-00820-5
  • Rispe C, Legeai F, Papura D, Bretaudeau A, Hudaverdian S et al (2016) De novo transcriptome assembly of the grapevine phylloxera allows identification of genes differentially expressed between leaf- and root-feeding forms. BMC Genomics 17:1–15. https://doi.org/10.1186/s12864-016-2530-8
  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480.e8. https://doi.org/10.1016/j.cell.2017.08.030
  • Rojas V, Jiménez H, Palma-Millanao R, González-González A, Machuca J et al (2018) Analysis of the grapevine moth Lobesia botrana antennal transcriptome and expression of odorant-binding and chemosensory proteins. Comp Biochem Physiol Part D Genomics Proteomics 27:1–12. https://doi.org/10.1016/j.cbd.2018.04.003
  • Rolshausen PE, Úrbez-Torres JR, Rooney-Latham S, Eskalen A, Smith RJ et al (2010) Evaluation of pruning wound susceptibility and protection against fungi associated with grapevine trunk diseases. Am J Enol Vitic 61:113–119
  • Rooney-Latham S, Eskalen A, Gubler WD (2005) Occurrence of Togninia minima perithecia in esca-affected vineyards in California. Plant Dis 89:867–871. https://doi.org/10.1094/PD-89-0867
  • Rossi V, Caffi T, Legler SE, Carotenuto E, Bigot G (2014) Large-scale application of a web-based Decision Support System for sustainable viticulture. IOBC/WPRS Bull
  • Rossi Stacconi MV, Grassi A, Ioriatti C, Anfora G (2019) Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. Biocontrol 64:9–19. https://doi.org/10.1007/s10526-018-09914-0
  • Rossman AY, Crous PW, Hyde KD, Hawksworth DL, Aptroot A et al (2015) Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus 6:507–523. https://doi.org/10.5598/imafungus.2015.06.02.14
  • Rossmann S, Richter R, Sun H, Schneeberger K, Töpfer R et al (2020) Mutations in the miR396 binding site of the growth-regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine. Plant J 101:1234–1248. https://doi.org/10.1111/tpj.14588
  • Roush TL, Granett J, Walker MA (2007) Inheritance of gall formation relative to phylloxera resistance levels in hybrid grapevines. Am J Enol Vitic 58:234–241
  • Rouxel M, Mestre P, Comont G, Lehman BL, Schilder A et al (2013) Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete. New Phytol 197:251–263. https://doi.org/10.1111/nph.12016
  • Rouxel M, Mestre P, Baudoin A, Carisse O, Delière L et al (2014) Geographic distribution of cryptic species of Plasmopara viticola causing downy mildew on wild and cultivated grape in Eastern North America. Phytopathology 104:692–701. https://doi.org/10.1094/PHYTO-08-13-0225-R
  • Rubio B, Lalanne-Tisné G, Voisin R, Tandonnet J-P, Portier U et al (2020) Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background. BMC Plant Biol 20:1–15. https://doi.org/10.1186/s12870-020-2310-0
  • Sáenz-Romo MG, Martínez-García H, Veas-Bernal A, Carvajal-Montoya LD, Martínez-Villar E et al (2019) Effect of ground-cover management on predatory mites (Acari: Phytoseiidae) in a Mediterranean vineyard. VITIS J Grapevine Res 58:25–32. https://doi.org/10.5073/vitis.2019.58.special-issue.25-32
  • Salvagnin U, Carlin S, Angeli S, Vrhovsek U, Anfora G et al (2016) Homologous and heterologous expression of grapevine E-(β)-caryophyllene synthase (VvGwECar2). Phytochemistry 131:76–83. https://doi.org/10.1016/j.phytochem.2016.08.002
  • Salvagnin U, Malnoy M, Thöming G, Tasin M, Carlin S et al (2018) Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behaviour. Plant Biotechnol J 16:264–271. https://doi.org/10.1111/pbi.12767
  • Sambucci O, Alston JM, Fuller KB, Lusk J (2019) The pecuniary and nonpecuniary costs of powdery mildew and the potential value of resistant grape varieties in California. Am J Enol Vitic 70:177–187. https://doi.org/10.5344/ajev.2018.18032
  • Santos JM, Correia VG, Phillips AJL (2010) Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol 114:255–270. https://doi.org/10.1016/j.funbio.2010.01.007
  • dos Santos RF, Spósito MB, Ayres MR, Sosnowski MR (2018) Phylogeny, morphology and pathogenicity of Elsinoë ampelina, the causal agent of grapevine anthracnose in Brazil and Australia. J Phytopathol 166:187–198. https://doi.org/10.1111/jph.12675
  • dos Santos RF, Ciampi-Guillardi M, Amorim L, Massola NS, Spósito MB (2018) Aetiology of anthracnose on grapevine shoots in Brazil. Plant Pathol 67:692–706. https://doi.org/10.1111/ppa.12756
  • Sapkota S, Chen LL, Yang S, Hyma KE, Cadle-Davidson L et al (2019a) Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton.’ Theor Appl Genet 132:137–147. https://doi.org/10.1007/s00122-018-3203-6
  • Sapkota SD, Chen LL, Yang S, Hyma KE, Cadle-Davidson LE et al (2019b) Quantitative Trait Locus mapping of downy mildew and Botrytis bunch rot resistance in a Vitis aestivalis-derived ‘Norton’-based population. Acta Hortic 1248:305–311. https://doi.org/10.17660/ActaHortic.2019.1248.44
  • Sargolzaei M, Maddalena G, Bitsadze N, Maghradze D, Bianco PA et al (2020) Rpv29, Rpv30 and Rpv31: three novel genomic loci associated with resistance to Plasmopara viticola in Vitis vinifera. Front Plant Sci 11:1–16. https://doi.org/10.3389/fpls.2020.562432
  • Sargolzaei M, Rustioni L, Cola G, Ricciardi V, Bianco PA et al (2021) Georgian grapevine cultivars: ancient biodiversity for future viticulture. Front Plant Sci 12:630122. https://doi.org/10.3389/fpls.2021.630122
  • Saucet SB, Van Ghelder C, Abad P, Duval H, Esmenjaud D (2016) Resistance to root-knot nematodes Meloidogyne spp. in woody plants. New Phytol 211:41–56. https://doi.org/10.1111/nph.13933
  • Savi T, García González A, Herrera JC, Forneck A (2019) Gas exchange, biomass and non-structural carbohydrates dynamics in vines under combined drought and biotic stress. BMC Plant Biol 19:1–11. https://doi.org/10.1186/s12870-019-2017-2
  • Savoi S, Eitle MW, Berger H, Curto M, Meimberg H et al (2020) Comparative transcriptome analysis of two root- feeding grape phylloxera (D. vitifoliae) lineages feeding on a rootstock and V. vinifera. Insects 11:1–21. https://doi.org/10.3390/insects11100691
  • Scalabrin S, Troggio M, Moroldo M, Pindo M, Felice N et al (2010) Physical mapping in highly heterozygous genomes: a physical contig map of the Pinot Noir grapevine cultivar. BMC Genomics 11:204. https://doi.org/10.1186/1471-2164-11-204
  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78. https://doi.org/10.1186/1471-2229-8-78
  • Scheper RWA (2001) Studies on the biology and genetic variation of Phomopsis on grapevine. PhD Thesis University of Adelaide, SA
  • Schmid J, Manty F, Cousins P (2009) Collecting Vitis berlandieri from native habitat sites. Acta Hortic 827:151–154. https://doi.org/10.17660/ActaHortic.2009.827.22
  • Schmidt RA (2014) Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp Appl Acarol 62:1–17. https://doi.org/10.1007/s10493-013-9730-6
  • Schmitt-Keichinger C, Hemmer C, Berthold F, Ritzenthaler C (2017) Molecular, cellular, and structural biology of Grapevine Fanleaf Virus. In: Meng B, Martelli GP, Golino DA, Fuchs M (eds) Grapevine viruses: molecular biology, diagnostics and management. Springer, Cham, Switzerland, pp 83–107. https://doi.org/10.1007/978-3-319-57706-7_4
  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753. https://doi.org/10.1038/sj.embor.7400769
  • Schreiner U (1984) Untersuchungen zur Anfälligkeit verschiedener Rebsorten, Pfropfkombinationen und Unterlagen gegenüber Tetranychus urticae und Panonychus ulmi. PhD Thesis Universität Kaiserslautern, Germany
  • Schröder S, Telle S, Nick P, Thines M (2011) Cryptic diversity of Plasmopara viticola (Oomycota, Peronosporaceae) in North America. Org Divers Evol 11:3–7. https://doi.org/10.1007/s13127-010-0035-x
  • Schruft G, Mittenmüller K, Stärk O (1979) Die Überwinterung der Gemeinen Spinnmilbe Tetranychus urticae Koch an der Rebe und ihr Auftreten im Frühjahr. Wein-Wissen 34:55–60
  • Schultz JC, Edger PP, Body MJA, Appel HM (2019) A galling insect activates plant reproductive programs during gall development. Sci Rep 9:1833. https://doi.org/10.1038/s41598-018-38475-6
  • Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E et al (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176. https://doi.org/10.1007/s00122-011-1695-4
  • Scintilla S, Salvagnin U, Giacomelli L, Zeilmaker T, Malnoy MA et al (2021) Regeneration of plants from DNA-free edited grapevine protoplasts. bioRxiv 2021.07.16.452503
  • Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373
  • Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü et al (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830. https://doi.org/10.1038/ng.2314
  • Sergeeva V, Nair NG, Barchia I, Priest M, Spooner-Hart R (2003) Germination of β conidia of Phomopsis viticola. Australas Plant Pathol 32:105–107. https://doi.org/10.1071/AP02072
  • Šeruga Musić M, Samarzija I, Hogenhout SA, Haryono M, Cho ST et al (2019) The genome of ‘Candidatus Phytoplasma solani’ strain SA-1 is highly dynamic and prone to adopting foreign sequences. Syst Appl Microbiol 42:117–127. https://doi.org/10.1016/j.syapm.2018.10.008
  • Shapira I, Keasar T, Harari AR, Gavish-Regev E, Kishinevsky M et al (2018) Does mating disruption of Planococcus ficus and Lobesia botrana affect the diversity, abundance and composition of natural enemies in Israeli vineyards? Pest Manag Sci 74:1837–1844. https://doi.org/10.1002/ps.4883
  • Silva DE, Do Nascimento JM, da Silva RTL, Ferla JJ, Ruffatto K et al (2021) Feeding preference and biological traits of Panonychus ulmi on leaves of apple and grapevine. Oecologia Aust 25:80–89. https://doi.org/10.4257/OECO.2021.2501.08
  • Simmons GS, Varela L, Daugherty M, Cooper M, Lance D et al (2021) Area-wide Eradication of the invasive European grapevine moth Lobesia botrana in California, USA. In: Hendrichs J, Pereira R, Vreysen MJB (eds) Area-wide integrated pest management, 1st edn. CRC Press, Boca Raton, FL, pp 581–596. https://doi.org/10.1201/9781003169239-31
  • Simpson AJG, Reinach FC, Arruda P, Abreu FA, Acencio M et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151–157. https://doi.org/10.1038/35018003
  • Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK et al (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511. https://doi.org/10.1128/JB.01779-08
  • Smit SJ, Vivier MA, Young PR (2020) Comparative (within species) genomics of the Vitis vinifera L. terpene synthase family to explore the impact of genotypic variation using phased diploid genomes. Front Genet 11:421. https://doi.org/10.3389/fgene.2020.00421
  • Smith LM, Stafford EM (1948) The bud mite and the erineum mite of grapes. Hilgardia 18:317–334. https://doi.org/10.3733/hilg.v18n07p317
  • Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR et al (2018a) SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLoS ONE 13:e0193121. https://doi.org/10.1371/journal.pone.0193121
  • Smith HM, Clarke CW, Smith BP, Carmody BM, Thomas MR et al (2018b) Genetic identification of SNP markers linked to a new grape phylloxera resistant locus in Vitis cinerea for marker-assisted selection. BMC Plant Biol 18:1–13. https://doi.org/10.1186/s12870-018-1590-0
  • Smith HM, Dunlevy JD, Morales NB, Smith AA, Clingeleffer PR (2019) Developing next-generation grapevine rootstocks with long-term resistance to phylloxera and root knot nematode. In: Beames KS, Robinson EMC, Dry PR, Johnson DL (eds) Australian wine industry technical conference. Adelaide, SA, pp 107–110
  • Sofia J, Mota M, Gonçalves MT, Rego C (2018) Response of four Portuguese grapevine cultivars to infection by Phaeomoniella chlamydospora. Phytopathol Mediterr 57:506–518. https://doi.org/10.14601/Phytopathol_Mediterr-23485
  • Sosnowski MR, Lardner R, Wicks TJ, Scott ES (2007) The influence of grapevine cultivar and isolate of Eutypa lata on wood and foliar symptoms. Plant Dis 91:924–931. https://doi.org/10.1094/PDIS-91-8-0924
  • Sosnowski M, Ayres MR, McCarthy M, Wicks T, Scott E (2016) Investigating potential resistance grapevine trunk diseases. Wine Vitic J 31:41–45
  • Spagnolo A, Magnin-Robert M, Alayi TD, Cilindre C, Mercier L et al (2012) Physiological changes in green stems of Vitis vinifera L. cv. Chardonnay in response to esca proper and apoplexy revealed by proteomic and transcriptomic analyses. J Proteome Res 11:461–475. https://doi.org/10.1021/pr200892g
  • Spigno G, Marinoni L, Garrido GD (2017) State of the art in grape processing by-products. In: Galanakis CM (ed) Handbook of grape processing by-products. Elsevier Academic Press, Cambridge, MA, pp 1–27. https://doi.org/10.1016/B978-0-12-809870-7.00001-6
  • Staudt G, Weischer B (1992) Resistance to transmission of grapevine fanleaf virus by Xiphinema index in Vitis rotundifolia and Vitis munsoniana. Vitic. Enol. Sci. 47:56–61
  • Staudt G, Kassemeyer HH (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. VITIS J Grapevine Res 34:225–228. https://doi.org/10.5073/VITIS.1995.34.225-228
  • St.Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268. https://doi.org/10.1146/annurev-phyto-080508-081904
  • Stam R, McDonald BA (2018) When resistance gene pyramids are not durable—the role of pathogen diversity. Mol Plant Pathol 19:521–524. https://doi.org/10.1111/mpp.12636
  • Su H, Jiao YT, Wang FF, Liu YE, Niu WL et al (2018) Overexpression of VpPR10.1 by an efficient transformation method enhances downy mildew resistance in V. vinifera. Plant Cell Rep 37:819–832. https://doi.org/10.1007/s00299-018-2271-z
  • Su K, Guo Y, Zhong W, Lin H, Liu Z et al (2021) High-density genetic linkage map construction and white rot resistance Quantitative Trait Loci mapping for genus Vitis based on restriction site-associated DNA sequencing. Phytopathology 111:659–670. https://doi.org/10.1094/PHYTO-12-19-0480-R
  • Sunitha S, Rock CD (2020) CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101–14. Transgenic Res 29:355–367. https://doi.org/10.1007/s11248-020-00196-w
  • Szitenberg A, Salazar-Jaramillo L, Blok VC, Laetsch DR, Joseph S et al (2017) Comparative genomics of apomictic root-knot nematodes: hybridization, ploidy, and dynamic genome change. Genome Biol Evol 9:2844–2861. https://doi.org/10.1093/gbe/evx201
  • Tait G, Vezzulli S, Sassù F, Antonini G, Biondi A et al (2017) Genetic variability in Italian populations of Drosophila suzukii. BMC Genet 18:87. https://doi.org/10.1186/s12863-017-0558-7
  • Tamba CL, Ni Y-L, Zhang Y-M (2017) Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLOS Comput Biol 13:e1005357. https://doi.org/10.1371/journal.pcbi.1005357
  • Tasin M, Bäckman AC, Bengtsson M, Ioriatti C, Witzgall P (2006) Essential host plant cues in the grapevine moth. Naturwissenschaften 93:141–144. https://doi.org/10.1007/s00114-005-0077-7
  • Tasin M, Lucchi A, Ioriatti C, Mraihi M, De cristofaro A et al (2011) Oviposition response of the moth Lobesia botrana to sensory cues from a host plant. Chem Senses 36:633–639. https://doi.org/10.1093/chemse/bjr027
  • Taylor CE, Raski DJ (1964) On the transmission of grape fanleaf by Xiphinema index. Nematologica 10:489–495. https://doi.org/10.1163/187529264X00510
  • Tegli S, Bertelli E, Surico G (2000) Sequence analysis of ITS ribosomal DNA in five Phaeoacremonium species and development of a PCR-based assay for the detection of P. chlamydosporum and P. aleophilum in grapevine tissue. Phytopathol Mediterr 39:134–149. https://doi.org/10.14601/Phytopathol_Mediterr-1555
  • Teh SL, Fresnedo-Ramírez J, Clark MD, Gadoury DM, Sun Q et al (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breed 37:1–16. https://doi.org/10.1007/s11032-016-0586-4
  • Teh SL, Rostandy B, Awale M, Luby JJ, Fennell A et al (2019) Genetic analysis of stilbenoid profiles in grapevine stems reveals a major mQTL hotspot on chromosome 18 associated with disease-resistance motifs. Hortic Res 6:121. https://doi.org/10.1038/s41438-019-0203-x
  • Téliz D, Landa BB, Rapoport HF, Camacho FP, Jiménez-Díaz RM et al (2007) Plant-parasitic nematodes infecting grapevine in Southern Spain and susceptible reaction to root-knot nematodes of rootstocks reported as moderately resistant. Plant Dis 91:1147–1154. https://doi.org/10.1094/PDIS-91-9-1147
  • Tello J, Torres-Pérez R, Grimplet J, Ibáñez J (2016) Association analysis of grapevine bunch traits using a comprehensive approach. Theor Appl Genet 129:227–242. https://doi.org/10.1007/s00122-015-2623-9
  • Tello J, Forneck A (2019) Use of DNA markers for grape Phylloxera population and evolutionary genetics: from RAPDS to SSRs and beyond. Insects 10:317. https://doi.org/10.3390/insects10100317
  • Tello J, Mammerler R, Čajić M, Forneck A (2019) Major outbreaks in the nineteenth century shaped grape phylloxera contemporary genetic structure in Europe. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-54122-0
  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. https://doi.org/10.1038/nature06148
  • Thiéry D, Moreau J (2005) Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 143:548–557. https://doi.org/10.1007/s00442-005-0022-7
  • Thind TS (2019) Anthracnose. In: Wilcox WF, Gubler WD, Uyemoto JK (eds) Compendium of grape diseases, disorders, and pests. APS Press, St. Paul, MN, pp 17–19
  • This P, Boursiquot J (1999) Essai de définition du cépage. Progrès Agric Vitic 116:359–361
  • This P, Jung A, Boccacci P, Borrego J, Botta R et al (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458. https://doi.org/10.1007/s00122-004-1760-3
  • This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519. https://doi.org/10.1016/j.tig.2006.07.008
  • Tixier M-S (2018) Predatory mites (Acari: Phytoseiidae). In: Agro-ecosystems and conservation biological control: A review and explorative approach for forecasting plant-predatory mite interactions and mite dispersal. Front Ecol Evol 6. https://doi.org/10.3389/fevo.2018.00192
  • Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990. https://doi.org/10.1007/BF00211051
  • Tian S, Yin X, Fu P, Wu W, Lu J (2020) Ectopic expression of grapevine gene VaRGA1 in arabidopsis improves resistance to downy mildew and Pseudomonas syringae pv. Tomato DC3000 but increases susceptibility to Botrytis cinerea. Int J Mol Sci 21. https://doi.org/10.3390/ijms21010193
  • Tibbs Cortes L, Zhang Z, Yu J (2021) Status and prospects of genome-wide association studies in plants. Plant Genome 14. https://doi.org/10.1002/tpg2.20077
  • Toffolatti S, Venturini G, Maffi D, Vercesi A (2012) Phenotypic and histochemical traits of the interaction between Plasmopara viticola and resistant or susceptible grapevine varieties. BMC Plant Biol 12:124. https://doi.org/10.1186/1471-2229-12-124
  • Toffolatti SL, Maddalena G, Salomoni D, Maghradze D, Bianco PA et al (2016) Evidence of resistance to the downy mildew agent Plasmopara viticola in the Georgian Vitis vinifera germplasm. VITIS J Grapevine Res 55:121–128. https://doi.org/10.5073/vitis.2016.55.121-128
  • Toffolatti SL, De Lorenzis G, Costa A, Maddalena G, Passera A et al (2018) Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Sci Rep 8:12523. https://doi.org/10.1038/s41598-018-30413-w
  • Toffolatti SL, De Lorenzis G, Brilli M, Moser M, Shariati V et al (2020) Novel aspects on the interaction between grapevine and Plasmopara viticola: dual-RNA-seq analysis highlights gene expression dynamics in the pathogen and the plant during the battle for infection. Genes (basel) 11:261. https://doi.org/10.3390/genes11030261
  • Tomoiaga L, Chedea VS (2020) The behaviour of some grapevine varieties to the Guignardia bidwellii fungus attack. Bull Univ Agric Sci Vet Med Cluj-Napoca Hortic 77:122. https://doi.org/10.15835/buasvmcn-hort:2019.0042
  • Topalović O, Hussain M, Heuer H (2020) Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Front Microbiol 11:313. https://doi.org/10.3389/fmicb.2020.00313
  • Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E et al (2011) New horizons for grapevine breeding. Fruit, Veg Cereal Sci Biotechnol 5:79–100
  • Travadon R, Rolshausen PE, Gubler WD, Cadle-Davidson L, Baumgartner K (2013) Susceptibility of cultivated and wild Vitis spp. to wood infection by fungal trunk pathogens. Plant Dis 97:1529–1536. https://doi.org/10.1094/PDIS-05-13-0525-RE
  • Travadon R, Lawrence DP, Rooney-Latham S, Gubler WD, Wilcox WF et al (2015) Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol 119:53–66. https://doi.org/10.1016/j.funbio.2014.11.002
  • Trdá L, Fernandez O, Boutrot F, Héloir M, Kelloniemi J et al (2014) The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol 201:1371–1384. https://doi.org/10.1111/nph.12592
  • Trivellone V, Jermini M, Linder C, Cara C, Delabays N et al (2013) Rôle de la flore du vignoble sur la distribution de Scaphoideus titanus. Rev Suisse Vitic Arboric Hortic 45:222–228
  • Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA et al (2007) A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring pinot noir bacterial artificial chromosome contigs. Genetics 176:2637–2650. https://doi.org/10.1534/genetics.106.067462
  • Tröndle D, Schröder S, Kassemeyer H-H, Kiefer C, Koch MA et al (2010) Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers. Am J Bot 97:1168–1178. https://doi.org/10.3732/ajb.0900218
  • Trotel-Aziz P, Couderchet M, Vernet G, Aziz A (2006) Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol 114:405–413. https://doi.org/10.1007/s10658-006-0005-5
  • Tsai C-W, Rowhani A, Golino DA, Daane KM, Almeida RPP (2010) Mealybug transmission of Grapevine Leafroll Viruses: an analysis of virus–vector specificity. Phytopathology 100:830–834. https://doi.org/10.1094/PHYTO-100-8-0830
  • Tumber KP, Alston JM, Fuller KB (2014) Pierce’s disease costs California $104 million per year. Calif Agric 68:20–29. https://doi.org/10.3733/ca.v068n01p20
  • Uecker FA (1988) A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycol Mem 1–231
  • Ullrich C, Kleespies R, Enders M, Koch E (2009) Biology of the black rot pathogen, Guignardia bidwellii, its development in susceptible leaves of grapevine Vitis vinifera., J Für Kult 61:82–90
  • Umina PA, Corrie AM, Herbert KS, White VL, Powell KS et al (2007) The use of DNA markers for pest management-clonal lineages and population biology of grape phylloxera. Acta Hortic 733:183–195. https://doi.org/10.17660/ActaHortic.2007.733.20
  • Úrbez-Torres JR, Peduto F, Smith RJ, Gubler WD (2013) Phomopsis dieback: a grapevine trunk disease caused by Phomopsis viticola in California. Plant Dis 97:1571–1579. https://doi.org/10.1094/PDIS-11-12-1072-RE
  • Valenzano D, Bari G, Valeria M, de Lillo E (2019) Off-host survival of Eriophyoidea and remarks on their dispersal modes. Exp Appl Acarol 79:21–33. https://doi.org/10.1007/s10493-019-00417-w
  • Valenzano D, Tumminello MT, Gualandri V, de Lillo E (2020) Morphological and molecular characterization of the Colomerus vitis erineum strain (Trombidiformes: Eriophyidae) from grapevine erinea and buds. Exp Appl Acarol 80:183–201. https://doi.org/10.1007/s10493-020-00470-w
  • Van Damme M, Huibers RP, Elberse J, Van Den Ackerveken G (2008) Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J 54:785–793. https://doi.org/10.1111/j.1365-313X.2008.03427.x
  • van Heerden CJ, Burger P, Vermeulen A, Prins R (2014) Detection of downy and powdery mildew resistance QTL in a ‘Regent’ × ‘RedGlobe’ population. Euphytica 200:281–295. https://doi.org/10.1007/s10681-014-1167-4
  • Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Physiol 121:12–21. https://doi.org/10.1016/j.pestbp.2014.12.009
  • Van Leeuwen T, Witters J, Nauen R, Duso C, Tirry L (2010) The control of eriophyoid mites: state of the art and future challenges. Exp Appl Acarol 51:205–224. https://doi.org/10.1007/s10493-009-9312-9
  • Van Niekerk JM, Groenewald JZ, Farr DF, Fourie PH, Halleen F et al (2005) Reassessment of Phomopsis species on grapevines. Australas Plant Pathol 34:27–39. https://doi.org/10.1071/AP04072
  • Van Schie CCN, Takken FLW (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581. https://doi.org/10.1146/annurev-phyto-102313-045854
  • Vandelle E, Ariani P, Regaiolo A, Danzi D, Lovato A et al (2021) The grapevine e3 ubiquitin ligase Vriatl156 confers resistance against the downy mildew pathogen Plasmopara viticola. Int J Mol Sci 22:1–19. https://doi.org/10.3390/ijms22020940
  • Vanegas F, Bratanov D, Powell KS, Weiss J, Gonzalez F (2018) A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data. Sensors (switzerland) 18:1–21. https://doi.org/10.3390/s18010260
  • Varela A, Ibañez VN, Alonso R, Zavallo D, Asurmendi S et al (2021) Vineyard environments influence Malbec grapevine phenotypic traits and DNA methylation patterns in a clone-dependent way. Plant Cell Rep 40:111–125. https://doi.org/10.1007/s00299-020-02617-w
  • Vargas AM, Velez MD, de Andres MT, Laucou V, Lacombe T et al (2007) Corinto bianco: a seedless mutant of Pedro Ximenes. Am J Enol Vitic 58:540–543
  • Varnier A, Sanchez L, Vatsa P, Boudesocque L, Garcia-brugger A et al (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:178–193. https://doi.org/10.1111/j.1365-3040.2008.01911.x
  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2. https://doi.org/10.1371/journal.pone.0001326
  • Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S et al (2013) Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS ONE 8:e61228. https://doi.org/10.1371/journal.pone.0061228
  • Vezzulli S, Malacarne G, Masuero D, Vecchione A, Dolzani C et al (2019a) The Rpv3-3 haplotype and stilbenoid induction mediate downy mildew resistance in a grapevine interspecific population-supplementary material. Front Plant Sci 10:1–23. https://doi.org/10.3389/fpls.2019.00234
  • Vezzulli S, Doligez A, Bellin D (2019b) Molecular mapping of grapevine genes. In: Cantu D, Walker M (eds) The grape genome. Springer, Cham, Switzerland, pp 103–136. https://doi.org/10.1007/978-3-030-18601-2_7
  • Vezzulli S, Zulini L, Stefanini M (2019c) Genetics-assisted breeding for downy/powdery mildew and phylloxera resistance at FEM. BIO Web Conf 12:01020. https://doi.org/10.1051/bioconf/20191201020
  • Vigl Egarter L, Schmid A, Moser F, Balotti A, Gartner E et al (2018) Upward shifts in elevation - a winning strategy for mountain viticulture in the context of climate change? In: E3S web of conferences. p 2006. https://doi.org/10.1051/e3sconf/20185002006
  • Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine Fanleaf Virus. Transgenic Res 13:165–179. https://doi.org/10.1023/B:TRAG.0000026075.79097.c9
  • Villate L, Morin E, Demangeat G, Van Helden M, Esmenjaud D (2012) Control of Xiphinema index populations by fallow plants under greenhouse and field conditions. Phytopathology 102:627–634. https://doi.org/10.1094/PHYTO-01-12-0007
  • Viret O, Spring JL, Gindro K (2018) Stilbenes: biomarkers of grapevine resistance to fungal diseases. OENO One 52:235–240. https://doi.org/10.20870/oeno-one.2018.52.3.2033
  • Wairich A, Malabarba J, Buffon V, Porto DD, Togawa R et al (2021) Structural and molecular characterization of the Rpv3 locus towards the development of KASP markers for downy mildew resistance in grapevine (Vitis spp.). bioRxiv 2021.02.25.432814. https://doi.org/10.1101/2021.02.25.432814
  • Waite H, Morton L (2007) Hot water treatment, trunk diseases and other critical factors in the production of high-quality grapevine planting material. Phytopathol Mediterr 46:5–17. https://doi.org/10.14601/Phytopathol_Mediterr-1857
  • Walker A-S (2016) Diversity within and between species of Botrytis. In: Fillinger S, Elad Y (eds) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer, Cham, Switzerland, pp 91–125. https://doi.org/10.1007/978-3-319-23371-0_6
  • Walker A, Tenscher A (2017) Breeding Pierce’s disease resistant winegrapes. In: Research progress reports Pierce’s disease and other designated pests and diseases of winegrapes. California Department of Food and Agriculture, San Diego, CA, pp 167–177
  • Walker MA, Tenscher A (2019) Breeding Pierce’s disease resistant winegrapes. In: Department of Food and Agriculture (ed) Research progress reports: Pierce’s disease and other designated pests and diseases of winegrapes. Sacramento, CA, pp 104–115
  • Walker MA, Heinitz C, Riaz S, Uretsky J (2019) Grape taxonomy and germplasm. In: Cantu D, Walker MA (eds) The grape genome. Springer, Cham, Switzerland, pp 25–38. https://doi.org/10.1007/978-3-030-18601-2_2
  • Walker MA, Tenscher AC, Riaz S, Romero N (2021a) Grapevine plant named ‘Camminare noir’
  • Walker MA, Tenscher AC, Riaz S, Romero N (2021b) Grapevine plant named ‘Ambulo blanc’
  • Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J et al (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:G1–G7. https://doi.org/10.1603/IPM10010
  • Walton VM, Daane KM, Pringle KL (2004) Monitoring Planococcus ficus in South African vineyards with sex pheromone-baited traps. Crop Prot 23:1089–1096. https://doi.org/10.1016/j.cropro.2004.03.016
  • Walton VM, Dreves AJ, Gent DH, James DG, Martin RR et al (2007) Relationship between rust mites Calepitrimerus vitis (nalepa), bud mites Colomerus vitis (pagenstecher) (acari: Eriophyidae) and short shootsyndrome in Oregon vineyards. Int J Acarol 33:307–318. https://doi.org/10.1080/01647950708683691
  • Walton VM, Daane KM, Bentley WJ, Millar JG, Larsen TE et al (2006) Pheromone-based mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in California vineyards. J Econ Entomol 99:1280–1290. 
  • Walton VM, Dreves AJ, Coop LB, Jones GV, Skinkis PA (2010) Developmental parameters and seasonal phenology of Calepitrimerus vitis (Acari: Eriophyidae) in wine grapes of Western Oregon. Environ Entomol 39:2006–2016. https://doi.org/10.1603/EN09197
  • Wan Y, He P, Wang Y (2007a) Inheritance of downy mildew resistance in two interspecific crosses between Chinese wild grapes and European grapes. VITIS J Grapevine Res 46:156–157. https://doi.org/10.5073/vitis.2007.46.156-157
  • Wan Y, Schwaninger H, He P, Wang Y (2007b) Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. VITIS J Grapevine Res 46:132–136. https://doi.org/10.5073/vitis.2007.46.132-136
  • Wan Y, Schwaninger H, Li D, Simon CJ, Wang Y et al (2008a) A review of taxonomic research on Chinese wild grapes. VITIS J Grapevine Res 47:81–88. https://doi.org/10.5073/vitis.2008.47.81-88
  • Wan Y, Schwaninger H, Li D, Simon CJ, Wang Y et al (2008b) The eco-geographic distribution of wild grape germplasm in China. VITIS J Grapevine Res 47:77–80. https://doi.org/10.5073/vitis.2008.47.77-80
  • Wan Y, Schwaninger HR, Baldo AM, Labate JA, Zhong G-YY et al (2013) A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change. BMC Evol Biol 13:141. https://doi.org/10.1186/1471-2148-13-141
  • Wan D-Y, Guo Y, Cheng Y, Hu Y, Xiao S et al (2020) CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Hortic Res 7:116. https://doi.org/10.1038/s41438-020-0339-8
  • Wang Y, Liu Y, He P, Chen J, Lamikanra O et al (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis spp. species. VITIS J Grapevine Res 34:159–164
  • Wang Y, Liu Y, He P, Lamikanra O, Lu J (1998) Resistance of Chinese Vitis species to Elsinoe ampelina (de Bary) Shear. Hortic Sci 33:123–126. https://doi.org/10.21273/HORTSCI.33.1.123
  • Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21:2898–2913. https://doi.org/10.1105/tpc.109.067587
  • Wang S-B, Feng J-Y, Ren W-L, Huang B, Zhou L et al (2016a) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6:19444. https://doi.org/10.1038/srep19444
  • Wang Y, Liu X, Ren C, Zhong GY, Yang L et al (2016b) Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biol 16:3–9. https://doi.org/10.1186/s12870-016-0787-3
  • Wang J, Yao W, Wang L, Ma F, Tong W et al (2017a) Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis. Plant Sci 263:142–155. https://doi.org/10.1016/j.plantsci.2017.07.004
  • Wang L, Xie X, Yao W, Wang J, Ma F et al (2017b) RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. J Exp Bot 68:1669–1687. https://doi.org/10.1093/jxb/erx033
  • Wang M, Zhu Y, Han R, Yin W, Guo C et al (2018a) Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana improves resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. Int J Mol Sci 19. https://doi.org/10.3390/ijms19030696
  • Wang X, Tu M, Wang D, Liu J, Li Y et al (2018b) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855. https://doi.org/10.1111/pbi.12832
  • Wang FP, Zhao PP, Zhang L, Zhai H, Du YP (2019) Functional characterization of WRKY46 in grape and its putative role in the interaction between grape and phylloxera (Daktulosphaira vitifoliae). Hortic Res 6. https://doi.org/10.1038/s41438-019-0185-8
  • Wang Y, Zhang R, Liang Z, Li S (2020a) Grape-RNA: a database for the collection, evaluation, treatment, and data sharing of grape RNA-seq datasets. Genes (basel) 11(3):351. https://doi.org/10.3390/genes11030315
  • Wang L, Ahmad B, Liang C, Shi X, Sun R et al (2020b) Bioinformatics and expression analysis of histone modification genes in grapevine predict their involvement in seed development, powdery mildew resistance, and hormonal signaling. BMC Plant Biol 20:412. https://doi.org/10.1186/s12870-020-02618-7
  • Wang L, Liu W, Wang Y (2020c) Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Plant Sci 293:110421. https://doi.org/10.1016/j.plantsci.2020.110421
  • Wang X, Tu M, Wang Y, Yin W, Zhang Y et al (2021) Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine. Hortic Res 8:114. https://doi.org/10.1038/s41438-021-00549-4
  • Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R et al (2007) Genetic mapping and localization of Quantitative Trait Loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374. https://doi.org/10.1007/s11032-007-9097-7
  • Welter LJ, Grando SM, Zyprian EM (2011) Basics of grapevine genetic analysis. In: Adam-Blondon A-F, Martinez-Zapater JM, Kole C (eds) Genetics, genomics, and breeding of grapes. CRC Press, Boca Raton, FL, pp 165–187. https://doi.org/10.1201/b10948-11
  • Wen Z, Yao L, Singer SD, Muhammad H, Li Z et al (2017) Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria. Plant Physiol Biochem 112:346–361. https://doi.org/10.1016/j.plaphy.2017.01.017
  • Wermelinger B, Candolfi MP, Baumgärtner J (1992) A model of the European red mite (Acari, Tetranychidae) population dynamics and its linkage to grapevine growth and development. J Appl Entomol 114:155–166. https://doi.org/10.1111/j.1439-0418.1992.tb01110.x
  • Wiedemann-Merdinoglu S, Prado E, Coste P, Dumas V, Butterlin G et al (2006) Genetic analysis of resistance to downy mildew from Muscadinia rotundifolia. In: 9th International conference on grape genetics and breeding, Udine, Italy
  • Wilcox WF, Gubler WD, Uyemoto JK (2015) Diseases caused by biotic factors. In: Wilcox WF, Gubler WD, Uyemoto JK (eds) Compendium of grape diseases. APS Press, St. Paul, MN, pp 17–146
  • Wilcox WF, Hoffman LE (2019) Black rot. In: Wilcox WF, Gubler WD, Uyemoto JK (eds) Compendium of grape diseases, disorders, and pests. APS Press, St. Paul, MN, pp 28–33
  • Wilcox WF, Mahaffee W, Gubler WD (2019a) Botrytis bunch rot and blight. In: Wilcox WF, Gubler WD, Uyemoto JK (eds) Compendium of grape diseases, disorders, and pests. APS Press, St. Paul, MN, pp 39–45
  • Wilcox WF, Ellis MA, Rawnsley B, Rossman A, Pscheidt J (2019b) Phomopsis cane and leaf spot. In: Wilcox WF, Gubler WD, Uyemoto JK (eds) Compendium of grape diseases, disorders, and pests. APS Press, St. Paul, MN, pp 68–71
  • Williams BR, Edwards CE, Kwasniewski MT, Miller AJ (2020) Epigenomic patterns reflect irrigation and grafting in the grapevine clone. bioRxiv. https://doi.org/10.1101/2020.09.09.290072
  • Wilmink J, Breuer M, Forneck A (2021a) Grape phylloxera genetic structure reveals root–leaf migration within commercial vineyards. Insects 12:697. https://doi.org/10.3390/insects12080697
  • Wilmink J, Breuer M, Forneck A (2021b) Effect of temperature on host plant‐specific leaf‐ and root‐feeding performances: a comparison of grape phylloxera biotypes C and G. Entomol Exp Appl eea.13102. https://doi.org/10.1111/eea.13102
  • Wilson H, Daane KM (2017) Review of ecologically-based pest management in California vineyards. Insects 8:1–13. https://doi.org/10.3390/insects8040108
  • Wong DCJ, Sweetman C, Drew DP, Ford CM (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genomics 14:1–17. https://doi.org/10.1186/1471-2164-14-882
  • Wu J, Zhang Y, Zhang H, Huang H, Folta KM et al (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234. https://doi.org/10.1186/1471-2229-10-234
  • Wu J, Folta KM, Xie Y, Jiang W, Lu J et al (2017) Overexpression of Muscadinia rotundifolia CBF2 gene enhances biotic and abiotic stress tolerance in Arabidopsis. Protoplasma 254:239–251. https://doi.org/10.1007/s00709-015-0939-6
  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210. https://doi.org/10.1007/s00122-012-1887-6
  • Wyss U (2014) Xiphinema index, maintenance and feeding in monoxenic cultures. In: Maramorosch K, Mahmood F (eds) Rearing animal and plant pathogen vectors. CRC Press, Boca Raton, FL, pp 235–267. https://doi.org/10.1201/b16804-14
  • Xie H, Konate M, Sai N, Tesfamicael KG, Cavagnaro T et al (2017) Global DNA methylation patterns can play a role in defining terroir in grapevine (Vitis vinifera cv. Shiraz). Front Plant Sci 8:01860. https://doi.org/10.3389/fpls.2017.01860
  • Xiong J-S, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019. https://doi.org/10.1038/hortres.2015.19
  • Xu K, Riaz S, Roncoroni NC, Jin Y, Hu R et al (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor Appl Genet 116:305–311. https://doi.org/10.1007/s00122-007-0670-6
  • Xu Y, Wang Y (2014) Introduction of application of Chinese wild grapes species. Acta Hortic 1046:49–56. https://doi.org/10.17660/ActaHortic.2014.1046.4
  • Xu W, Ma F, Li R, Zhou Q, Yao W et al (2019) VpSTS29/STS2 enhances fungal tolerance in grapevine through a positive feedback loop. Plant Cell Environ 42:2979–2998. https://doi.org/10.1111/pce.13600
  • Yan X, Qiao H, Zhang X, Guo C, Wang M, et al. (2017) Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance. Sci Rep 7:4269. https://doi.org/10.1038/s41598-017-04105-w
  • Yang S, Fresnedo-Ramírez J, Wang M, Cote L, Schweitzer P et al (2016) A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine. Hortic Res 3:16002. https://doi.org/10.1038/hortres.2016.2
  • Yang Y, Hu X, Liu P, Chen L, Peng H, et al. (2021) A new root-knot nematode, Meloidogyne vitis sp. nov. (Nematoda: Meloidogynidae), parasitizing grape in Yunnan. PLoS ONE 16:e0245201. https://doi.org/10.1371/journal.pone.0245201
  • Yin K, Gao C, Qiu J-L (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107. https://doi.org/10.1038/nplants.2017.107
  • Yin L, Clark MD, Burkness EC, Hutchison WD (2019) Grape phylloxera (Hemiptera: Phylloxeridae), on cold-hardy hybrid wine grapes (Vitis spp.): a review of pest biology, damage, and management practices. J Integr Pest Manag 10:1–9. https://doi.org/10.1093/jipm/pmz011
  • Yin L, Karn A, Cadle-Davidson L, Zou C, Underhill A et al (2021) Fine mapping of leaf trichome density revealed a 747-kb region on chromosome 1 in cold-hardy hybrid wine grape populations. Front Plant Sci 12:1–15. https://doi.org/10.3389/fpls.2021.587640
  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501. https://doi.org/10.1146/annurev.phyto.34.1.479
  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208. https://doi.org/10.1038/ng1702
  • Yu Y, Xu W, Wang J, Wang L, Yao W et al (2013) The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol 200:834–846. https://doi.org/10.1111/nph.12418
  • Yu YH, Jiao ZL, Bian L, Wan YT, Yu KK et al (2019a) Overexpression of Vitis vinifera VvbZIP60 enhances Arabidopsis resistance to powdery mildew via the salicylic acid signaling pathway. Sci Hortic 256:1086402. https://doi.org/10.1016/j.scienta.2019.108640
  • Yu Y, Bian L, Jiao Z, Yu K, Wan Y et al (2019b) Molecular cloning and characterization of a grapevine (Vitis vinifera L.) serotonin N-acetyltransferase (VvSNAT2) gene involved in plant defense. BMC Genomics 20:1–13. https://doi.org/10.1186/s12864-019-6085-3
  • Yun HK, Park KS, Rho JH, Choi YJ, Kang KK (2006) Evaluating the resistance of grapevines against anthracnose by pathogen inoculation, vineyard inspection, and bioassay with culture filtrate from Elsinoe ampelina. J Am Pomol Soc 60:97–103
  • Zanettin G, Bullo A, Pozzebon A, Burgio G, Duso C (2021) Influence of vineyard inter-row groundcover vegetation management on arthropod assemblages in the vineyards of North-Eastern Italy. Insects 12:349. https://doi.org/10.3390/insects12040349
  • Zdunić G, Lukšić K, Nagy ZA, Mucalo A, Hančević K et al (2020) Genetic structure and relationships among wild and cultivated grapevines from Central Europe and part of the Western Balkan peninsula. Genes (basel) 11:962. https://doi.org/10.3390/genes11090962
  • Zecca G, Abbott JR, Sun WB, Spada A, Sala F et al (2012) The timing and the mode of evolution of wild grapes (Vitis). Mol Phylogenet Evol 62:736–747. https://doi.org/10.1016/j.ympev.2011.11.015
  • Zecca G, Labra M, Grassi F (2020) Untangling the evolution of American wild grapes: admixed species and how to find them. Front Plant Sci 10:1814. https://doi.org/10.3389/fpls.2019.01814
  • Zeilinger AR, Turek D, Cornara D, Sicard A, Lindow SE et al (2018) Bayesian vector transmission model detects conflicting interactions from transgenic disease-resistant grapevines. Ecosphere 9(11):e02494. https://doi.org/10.1002/ecs2.2494
  • Zendler D, Schneider P, Töpfer R, Zyprian E (2017) Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213:68. https://doi.org/10.1007/s10681-017-1857-9
  • Zendler D, Malagol N, Schwandner A, Töpfer R, Hausmann L, Zyprian E (2021a) High-throughput phenotyping of leaf discs infected with grapevine downy mildew using shallow convolutional neural networks. Agronomy 11(9):1768. https://doi.org/10.3390/agronomy11091768
  • Zendler D, Töpfer R, Zyprian E (2021b) Confirmation and fine mapping of the resistance locus Ren9 from the grapevine cultivar ‘Regent.’ Plants 10:1–20. https://doi.org/10.3390/plants10010024
  • Zhang J, Hausmann L, Eibach R, Welter LJ, Töpfer R et al (2009) A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) × rootstock cultivar ‘Börner’ (Vitis riparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet 119:1039–1051. https://doi.org/10.1007/s00122-009-1107-1
  • Zhang J, Zhou J-M (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793. https://doi.org/10.1093/mp/ssq035
  • Zhang K, Zhang N, Cai L (2013) Typification and phylogenetic study of Phyllosticta ampelicida and P. vaccinii. Mycologia 105:1030–1042. https://doi.org/10.3852/12-392
  • Zhang W, Manawasinghe IS, Zhao W, Xu J, Brooks S et al (2017) Multiple gene genealogy reveals high genetic diversity and evidence for multiple origins of Chinese Plasmopara viticola population. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-17569-7
  • Zhang Y, Yao JL, Feng H, Jiang J, Fan X et al (2019) Identification of the defense-related gene VdWRKY53 from the wild grapevine Vitis davidii using RNA sequencing and ectopic expression analysis in Arabidopsis. Hereditas 156:14. https://doi.org/10.1186/s41065-019-0089-5
  • Zhang Y, Fan X, Li Y, Sun H, Jiang J et al (2020) Restriction site-associated DNA sequencing reveals the molecular genetic diversity of grapevine and genes related to white rot disease. Sci Hortic 261:108907. https://doi.org/10.1016/j.scienta.2019.108907
  • Zhao H, Zhao K, Wang J, Chen X, Chen Z et al (2015) Comprehensive analysis of dicer-like, argonaute, and RNA-dependent RNA polymerase gene families in grapevine (Vitis vinifera). J Plant Growth Regul 34:108–121. https://doi.org/10.1007/s00344-014-9448-7
  • Zhao C, Rispe C, Nabity PD (2019a) Secretory RING finger proteins function as effectors in a grapevine galling insect. BMC Genomics 20:1–12. https://doi.org/10.1186/s12864-019-6313-x
  • Zhao C, Zhang Y, Du J, Guo X, Wen W et al (2019b) Crop phenomics: current status and perspectives. Front Plant Sci 10:714. https://doi.org/10.3389/fpls.2019.00714
  • Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 11:407–409. https://doi.org/10.1038/nmeth.2848
  • Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS (2017) Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc Natl Acad Sci USA 114(44):11715–11720. https://doi.org/10.1073/pnas.1709257114
  • Zhou J, Li D, Wang G, Wang F, Kunjal M et al (2020) Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. J Integr Plant Biol 62:269–286. https://doi.org/10.1111/jipb.12793
  • Zhu YM, Hoshino Y, Nakano M, Takahashi E, Mii M (1997) Highly efficient system of plant regeneration from protoplasts of grapevine (Vitis vinifera L.) through somatic embryogenesis by using embryogenic callus culture and activated charcoal. Plant Sci 123:151–157. https://doi.org/10.1016/S0168-9452(96)04557-8
  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1(1):5–20. https://doi.org/10.3835/plantgenome2008.02.0089
  • Zhu Z, Shi J, Cao J, He M, Wang Y (2012) VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata. Plant Cell Rep 31:2109–2120. https://doi.org/10.1007/s00299-012-1321-1
  • Zhu X, Jiu S, Li X, Zhang K, Wang M et al (2018) In silico identification and computational characterization of endogenous small interfering RNAs from diverse grapevine tissues and stages. Genes Genomics 40:801–817. https://doi.org/10.1007/s13258-018-0679-z
  • Zilberman D (2017) An evolutionary case for functional gene body methylation in plants and animals. Genome Biol 18:87. https://doi.org/10.1186/s13059-017-1230-2
  • Zinelabidine LH, Cunha J, Eiras-Dias JE, Cabello F, Martinez-Zapater JM et al (2015) Pedigree analysis of the Spanish grapevine cultivar “Hebén.” VITIS J Grapevine Res 54:81–86. https://doi.org/10.5073/vitis.2015.54.special-issue.81-86
  • Zini E, Dolzani C, Stefanini M, Gratl V, Bettinelli P et al (2019) R-Loci arrangement versus downy and powdery mildew resistance level: a Vitis hybrid survey. Int J Mol Sci 20:3526. https://doi.org/10.3390/ijms20143526
  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16. https://doi.org/10.1016/j.coi.2007.11.003
  • Zou C, Karn A, Reisch BI, Nguyen A, Sun Y et al (2020) Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. Nat Commun 11:413. https://doi.org/10.1038/s41467-019-14280-1
  • Zuo J, Niu Q, Møller SG, Chua N (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161. https://doi.org/10.1038/84428
  • Zyprian E, Töpfer R (2005) Development of microsatellite-derived markers for grapevine genotyping and genetic mapping. NCBI, GeneBank
  • Zyprian E, Ochßner I, Schwander F, Šimon S, Hausmann L et al (2016) Quantitative Trait Loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genomics 291(4):1573–1594. https://doi.org/10.1007/s00438-016-1200-5