Somatic Variation and Cultivar Innovation in Grapevine

  1. Carbonell-Bejerano, Pablo
  2. Royo, Carolina
  3. Mauri, Nuria
  4. Ibáñez, Javier
  5. Miguel Martínez Zapater, José
Libro:
Advances in Grape and Wine Biotechnology

Editorial: IntechOpen

ISBN: 978-1-78984-612-6 978-1-78985-699-6

Año de publicación: 2019

Tipo: Capítulo de Libro

beta Ver similares en nube de resultados
DOI: 10.5772/INTECHOPEN.86443 GOOGLE SCHOLAR lock_openAcceso abierto editor
Repositorio institucional: lock_openAcceso abierto Editor

Resumen

Paradoxically, continuous vegetative multiplication of traditional grapevine cultivars aimed to maintain cultivar attributes in this highly heterozygous species ends in the accumulation of considerable somatic variation. This variation has long contributed to cultivar adaptation and evolution under changing environmental and cultivation conditions and has also been a source of novel traits. Understanding how this somatic variation originates provides tools for genetics-assisted tracking of selected variants and breeding. Potentially, the identification of the mutations causing the observed phenotypic variation can now help to direct genome editing approaches to improve the genotype of elite traditional cultivars. Molecular characterization of somatic variants can also generate basic information helping to understand gene biological function. In this chapter, we review the state of the art on somatic variation in grapevine at phenotypic and genome sequence levels, present possible strategies for the study of this variation, and describe a few examples in which the genetic and molecular basis or very relevant grapevine traits were successfully identified.

Referencias bibliográficas

  • Wine Economics Research Centre. The University of Adelaide. 2010. Available from: http://www.adelaide.edu.au/wine-econ/databases/winegrapes/
  • Mosedale JR, Abernethy KE, Smart RE, Wilson RJ, Maclean IM. Climate change impacts and adaptive strategies: Lessons from the grapevine. Global Change Biology. 2016;22:3814-3828. DOI: 10.1111/gcb.13406
  • van Leeuwen C, Darriet P. The impact of climate change on viticulture and wine quality. Journal of Wine Economics. 2016;11:150-167. DOI: 10.1017/jwe.2015.21
  • Caffarra A, Rinaldi M, Eccel E, Rossi V, Pertot I. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems and Environment. 2012;148:89-101. DOI: 10.1016/j.agee.2011.11.017
  • Pertot I, Caffi T, Rossi V, Mugnai L, Hoffmann C, Grando MS, et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Protection. 2017;97:70-84. DOI: 10.1016/j.cropro.2016.11.025
  • This P, Lacombe T, Thomas MR. Historical origins and genetic diversity of wine grapes. Trends in Genetics. 2006;22:511-519. DOI: 10.1016/j.tig.2006.07.008
  • Bouquet A. Grapevines and viticulture. In: Adam-Blondon AF, Martínez Zapater JM, Kole C, editors. Genetics, Genomics, and Breeding of Grapes. Vol. 2011. Boca Raton, Florida, USA: CRC Press; 2011. pp. 1-29
  • Toepfer R, Hausmann L, Eibach R. Molecular breeding. In: Adam-Blondon AF, Martínez Zapater JM, Kole C, editors. Genetics, Genomics, and Breeding of Grapes. Boca raton, Florida, USA: CRC Press; 2011. pp. 160-185
  • Salmon JM, Ojeda H, Escudier JL. Disease resistant grapevine varieties and quality: The case of Bouquet varieties. OENO One. 2018;52:225-230. DOI: 10.20870/oeno-one.2018.52.3.2139
  • Merdinoglu D, Schneider C, Prado E, Wiedemann-Merdinoglu S, Mestre P. Breeding for durable resistance to downy and powdery mildew in grapevine. OENO one. 2018;52:189-195. DOI: 10.20870/oeno-one.2018.52.3.2116
  • Di Gaspero G, Cattonaro F. Application of genomics to grapevine improvement. Australian Journal of Grape and Wine Research. 2010;16:122-130. DOI: 10.1111/j.1755-0238.2009.00072
  • Adam-Blondon AF, Zapater M, JM KC, editors. Genetics, Genomics, and Breeding of Grapes. CRC Press; 2011. 345 p
  • Ibañez J, Carreño J, Yuste J, Martínez-Zapater JM. Grapevine breeding and clonal selection programs in Spain. In: Reynolds AG, editor. Grapevine Breeding Programs for the Wine Industry. Amsterdam, The Netherlands: Elsevier; 2015. pp. 183-209. ISBN: 978-1-78242-075-0
  • Pelsy F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity. 2010;104:331-340. DOI: 10.1038/hdy.2009.161
  • Carbonell-Bejerano P, Royo C, Torres-Pérez R, Grimplet J, Fernandez L, Franco-Zorrilla JM, et al. Catastrophic unbalanced genome rearrangements cause somatic loss of berry color in grapevine. Plant Physiology. 2017;75:1-16. DOI: 10.1104/pp.17.00715
  • Torregrosa L, Fernandez L, Bouquet A, Boursiquot JM, Pelsy F, Martínez-Zapater JM. Origins and consequences of somatic variation in grapevine. In: Adam-Blondon AF, Martínez Zapater JM, Kole C, editors. Genetics, Genomics, and Breeding of Grapes. Boca Raton, Florida: CRC Press; 2011. pp. 68-92
  • Acanda Y, Prado MJ, González MV, Rey M. Somatic embryogenesis from stamen filaments in grapevine (Vitis vinifera L. cv. Mencía): Changes in ploidy level and nuclear DNA content. In Vitro Cellular and Developmental Biology. Plant. 2013;49:276. DOI: 10.1007/s11627-013-9499-7
  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449:463-467. DOI: 10.1038/nature06148
  • Thompson MM, Olmo HP. Cytohistological studies of cytochimeric and tetraploid grapes. American Journal of Botany. 1963;50:901-906. DOI: 10.1002/j.1537-2197.1963.tb06569.x
  • Franks T, Botta R, Thomas MR. Chimerism in grapevines: Implications for cultivar identity, ancestry and genetic improvement. Theoretical and Applied Genetics. 2002;104:192-199. DOI: 10.1007/s001220100683
  • Vezzulli S, Leonardelli L, Malossini U, Stefanini M, Velasco R, Moser C. Pinot blanc and pinot gris arose as independent somatic mutations of pinot noir. Journal of Experimental Botany. 2012;63:6359-6369. DOI: 10.1093/jxb/ers290
  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One. 2007;2:e1326. DOI: 10.1371/journal.pone.0001326
  • Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods. 2016;13:1050-1054. DOI: 10.1038/nmeth.4035
  • Roach MJ, Johnson DL, Bohlmann J, van Vuuren HJJ, Jones SJM, Pretorius IS, et al. Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLoS Genetics. 2018;14:e1007807. DOI: 10.1371/journal.pgen.1007807
  • Xu Y, Gao Z, Tao J, Jiang W, Zhang S, Wang Q , et al. Genome-wide detection of SNP and SV variations to reveal early ripening-related genes in grape. PLoS One. 2016;11(2):e0147749. DOI: 10.1371/journal.pone.0147749
  • Royo C, Torres-Pérez R, Mauri N, Diestro N, Cabezas JA, Marchal C, et al. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiology. 2018;177:1234-1253. DOI: 10.1104/pp.18.00259
  • Carrier G, Le Cunff L, Dereeper A, Legrand D, Sabot F, Bouchez O, et al. Transposable elements are a major cause of somatic polymorphism in Vitis vinifera L. PLoS One. 2012;7:e32973. DOI: 10.1371/journal.pone.0032973
  • Gambino G, Dal Molin A, Boccacci P, Minio A, Chitarra W, Avanzato CG, et al. Whole-genome sequencing and SNV genotyping of 'Nebbiolo' (Vitis vinifera L.) clones. Scientific Reports. 2017;7:17294. DOI: 10.1038/s41598-017-17405-y
  • Royo C, Carbonell-Bejerano P, Torres-Perez R, Nebish A, Martinez O, Rey M, et al. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. Journal of Experimental Botany. 2016;67:259-273. DOI: 10.1093/jxb/erv452
  • Marroni F, Pinosio S, Morgante M. Structural variation and genome complexity: Is dispensable really dispensable? Current Opinion in Plant Biology. 2014;18:31-36. DOI: 10.1016/j.pbi.2014.01.003
  • Li XQ. Natural attributes and agricultural implications of somatic genome variation. Current Issues in Molecular Biology. 2016;20:29-46
  • Collins RL, Brand H, Redin CE, Hanscom C, Antolik C, et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biology. 2017;18:36. DOI: 10.1186/s13059-017-1158-6
  • Liu P, Erez A, Nagamani SC, Dhar SU, Kolodziejska KE, et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell. 2011;146:889-903. DOI: 10.1016/j.cell.2011.07.042
  • McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics. 1941;26:234-282
  • Sorzano CO, Pascual-Montano A, Sánchez de Diego A, Martínez AC, van Wely KH. Chromothripsis: Breakage-fusion-bridge over and over again. Cell Cycle. 2013;12:2016-2023. DOI: 10.4161/cc.25266
  • Cardone MF, D'Addabbo P, Alkan C, Bergamini C, Catacchio CR, Anaclerio F, et al. Inter-varietal structural variation in grapevine genomes. Plant Journal. 2016;88:648-661. DOI: 10.1111/tpj.13274
  • Mercenaro L, Nieddu G, Porceddu A, Pezzotti M, Camiolo S. Sequence polymorphisms and structural variations among four grapevine (Vitis vinifera L.) cultivars representing Sardinian agriculture. Frontiers in Plant Science. 2017;8:1279. DOI: 10.3389/fpls.2017.01279
  • Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proceedings National Academy Sciences USA. 2017;114:11715-11720. DOI: 10.1073/pnas.1709257114
  • Fedoroff NV. Transposable elements, epigenetics, and genome evolution. Science. 2012;338:758-767. DOI: 10.1126/science.338.6108.758
  • Benjak A, Boue S, Forneck A, Casacuberta JM. Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.). Genome Biology and Evolution. 2009;1:75-84. DOI: 10.1093/gbe/evp009
  • Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color. Science. 2004;304:982. DOI: 10.1126/science.1095011
  • Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM. Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant Journal. 2010;61:545-557. DOI: 10.1111/j.1365-313X.2009.04090.x
  • Fernandez L, Chaib J, Martinez-Zapater JM, Thomas MR, Torregrosa L. Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant Journal. 2013;73:918-928. DOI: 10.1111/tpj.12083
  • Wegschneider E, Benjak A, Forneck A. Clonal variation in pinot noir revealed by S-SAP involving universal retrotransposon-based sequences. American Journal of Enology and Viticulture. 2009;60:104-109
  • Castro I, D'Onofrio C, Martin JP, Ortiz JM, De Lorenzis G, Ferreira V, et al. Effectiveness of AFLPs and retrotransposon-based markers for the identification of Portuguese grapevine cultivars and clones. Molecular Biotechnology. 2012;52:26-39. DOI: 10.1007/s12033-011-9470-y
  • Emanuelli F, Battilana J, Costantini L, Le Cunff L, This P, MS G. A candidate gene association study for Muscat flavor in grapevine Vitis vinifera L. BMC Plant Biology. 2010;10:241. DOI: 10.1186/1471-2229-10-241
  • Boss PK, Thomas MR. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature. 2002;416:847-850. DOI: 10.1038/416847a
  • Pratt C. Reproductive anatomy in cultivated grapes: A review. American Journal of Enology and Viticulture. 1971;22:92-109
  • Mullins MG. Regulation of inflorescence growth in cuttings of the grapevine (Vitis vinifera L.). Journal of Experimental Botany. 1968;19:532-543. DOI: 10.1093/jxb/19.3.532
  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GO, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes and Development. 1997;11:3194-3205. DOI: 10.1101/gad.11.23.3194
  • Rézeau P. Dictionnnaire des noms de cépages en France. Lyons, France: CNRS Editions; 1998. 424 p. ISBN: 978-2-271-05526-2
  • Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in chardonnay (Vitis vinifera L.). Scientific Reports. 2016;6:32289. DOI: 10.1038/srep32289
  • Chaïb J, Torregrosa L, Mackenzie D, Corena P, Bouquet A, Thomas MR. The grape microvine—A model system for rapid forward and reverse genetics of grapevines. Plant Journal. 2010;62:1083-1092. DOI: 10.1111/j.1365-313X.2010.04219.x
  • Ribéreau-Gayon P, Boidron JN, Terrier A. Aroma of Muscat grape varieties. Journal of Agriculture and Food Chemistry. 1975;23:1042-1047. DOI: 10.1021/jf60202a050
  • Crespan M, Milani N. The Muscats: A molecular analysis of synonyms, homonyms and genetic relationships within a large family of grapevine cultivars. Vitis. 2001;40:23-30
  • Duchêne E, Legras JL, Karst F, Merdinoglu D, Claudel P, Jaegli N, et al. Variation of linalool and geraniol content within two pairs of aromatic and non-aromatic grapevine clones. Australian Journal of Grape and Wine Research. 2009;15:120-130. DOI: 10.1111/j.1755-0238.2008.00039.x
  • Doligez A, Audiot E, Baumes R, This P. QTLs for Muscat flavour and monoterpenic odorant content in grapevine (Vitis vinifera L.). Molecular Breeding. 2006;18:109-125. DOI: 10.1007/s11032-006-9016-3
  • Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, et al. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theoretical and Applied Genetics. 2009;118:653-669. DOI: 10.1007/s00122-008-0927-8
  • Duchêne E, Butterlin G, Claudel P, Dumas V, Jaegli N, Merdinoglu D. A grapevine (Vitis vinifera L.) deoxy-D-xylulose synthase gene collocates with a major quantitative trait locus for terpenol content. Theoretical and Applied Genetics. 2009;118:541-552. DOI: 10.1007/s00122-008-0919-8
  • Battilana J, Emanuelli F, Gambino G, Gribaudo I, Gasperi F, Boss PK, et al. Functional effect of grapevine 1-deoxy-d-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. Journal of Experimental Botany. 2011;62:5497-5508. DOI: 10.1093/jxb/err231
  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Toepfer R, et al. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theoretical and Applied Genetics. 2004;108:501-515. DOI: 10.1007/s00122-003-1445-3
  • Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, et al. An integrated SSR map of grapevine based on five mapping populations. Theoretical and Applied Genetics. 2006;113:369-382. DOI: 10.1007/s00122-006-0295-1
  • Wong DC, Schlechter R, Vannozzi A, Höll J, Hmmam I, Bogs J, et al. A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Research. 2016;23:451-466. DOI: 10.1093/dnares/dsw028
  • Walker AR, Lee E, Bogs J, McDavid DA, Thomas MR, Robinson SP. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant Journal. 2007;49:772-785. DOI: 10.1111/j.1365-313X.2006.02997.x
  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta. 2002;215:924-933. DOI: 10.1007/s00425-002-0830-5
  • Fournier-Level A, Lacombe T, Le Cunff L, Boursiquot JM, This P. Evolution of the VvMybA gene family, the major determinant of berry colour in cultivated grapevine (Vitis vinifera L.). Heredity. 2009;104:351-362. DOI: 10.1038/hdy.2009.148
  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, et al. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: A quantitative trait locus to quantitative trait nucleotide integrated study. Genetics. 2009;183:1127-1139. DOI: 10.1534/genetics.109.103929
  • Lijavetzky D, Ruiz-García L, Cabezas JA, De Andrés MT, Bravo G, Ibáñez A, et al. Molecular genetics of berry colour variation in table grape. Molecular Genetics and Genomics. 2006;276:427-435. DOI: 10.1007/s00438-006-0149-1
  • Azuma A, Kobayashi S, Goto-Yamamoto N, Shiraishi M, Mitani N, Yakushiji H, et al. Color recovery in berries of grape (Vitis vinifera L.) 'Benitaka', a bud sport of 'Italia', is caused by a novel allele at the VvmybA1 locus. Plant Science. 2009;176:470-478. DOI: 10.1016/j.plantsci.2008.12.015
  • Walker AR, Lee E, Robinson SP. Two new grape cultivars, bud sports of cabernet sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Molecular Biology. 2006;62:623-635. DOI: 10.1007/s11103-006-9043-9
  • Furiya T, Suzuki S, Sueta T, Takayanagi T. Molecular characterization of a bud sport of pinot gris bearing white berries. American Journal of Enology and Viticulture. 2009;60:66-73
  • Migliaro D, Crespan M, Muñoz-Organero G, Velasco R, Moser C, Vezzulli S. Structural dynamics at the berry colour locus inVitis vinifera L. somatic variants. Australian Journal of Grape and Wine Research. 2014;20:485-495. DOI: 10.1111/ajgw.12103
  • Pelsy F, Dumas V, Bevilacqua L, Hocquigny S, Merdinoglu D. Chromosome replacement and deletion lead to clonal polymorphism of berry color in grapevine. PLoS Genetics. 2015;11:e1005081. DOI: 10.1371/journal.pgen.1005081
  • Yakushiji H, Kobayashi S, Goto-Yamamoto N, Tae Jeong S, Sueta T, Mitani N, et al. A skin color mutation of grapevine, from black-skinned Pinot Noir to white-skinned Pinot Blanc, is caused by deletion of the functional VvmybA1 allele. Bioscience, Biotechnology, and Biochemistry. 2006;70:1506-1508. DOI: 10.1271/bbb.50647
  • Vargas AM, Vélez MD, de Andrés MT, Laucou V, Lacombe T, Boursiquot J-M, Borrego J, Ibáñez J. Corinto bianco: A seedless mutant of Pedro Ximenes. American Journal of Enology and Viticulture; 2007;58:540-543. ISSN: 0002-9254
  • Ledbetter CA, Ramming DW. Seedlessness in grapes. Horticultural Reviews. 1987;11:159-184. DOI: 10.1002/9781118060841.ch5
  • Dangi GS, Mendum ML, Prins BH, Walker MA, Meredith CP, Simon CJ. Simple sequence repeat analysis of a clonally propagated species: A tool for managing a grape germplasm collection. Genome. 2001;44:432-438
  • Adam-Blondon AF, Lahogue-Esnault F, Bouquet A, Boursiquot JM, This P. Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis. 2001;40:147-155
  • Ibáñez J, Vargas AM, Palancar M, Borrego J, de Andrés MT. Genetic relationships among table-grape varieties. American Journal of Enology and Viticulture. 2009;60:35-42
  • Pearson HM. Parthenocarpy and seedlessness in Vitis vinifera. Science. 1932;76:594. DOI: 10.1126/science.76.1982.594
  • Malabarba J, Buffon V, Mariath JEA, Gaeta ML, Dornelas MC, Margis-Pinheiro M, et al. The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine. Journal of Experimental Botany. 2017;68:1493-1506. DOI: 10.1093/jxb/erx025
  • Bouquet A, Danglot Y. Inheritance of seedlessness in grapevine, Vitis vinifera L. Vitis. 1996;35:35-42
  • Lahogue F, This P, Bouquet A. Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theoretical and Applied Genetics. 1998;97:950-959
  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith P, et al. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theoretical and Applied Genetics. 2002;105:780-795. DOI: 10.1007/s00122-002-0951-z
  • Cabezas JA, Cervera MT, Ruiz-García L, Carreño J, Martínez-Zapater JM. A genetic analysis of seed and berry weight in grapevine. Genome. 2006;49:1572-1585. DOI: 10.1139/g06-122
  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From quantitative trait loci to underlying genes. BMC Plant Biology. 2008;8:38. DOI: 10.1186/1471-2229-8-38
  • Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, Miccono MA, et al. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biology. 2011;11:57. DOI: 10.1186/1471-2229-11-57
  • Mizzotti C, Mendes MA, Caporali E, Schnittger A, Kater MM, Battaglia R, et al. The MADS box genes SEEDSTICK and Arabidopsis Bsister play a maternal role in fertilization and seed development. Plant Journal. 2012;70:409-420. DOI: 10.1111/j.1365-313X.2011.04878.x
  • Singh R, Low ET, Ooi LC, Ong-Abdullah M, Ting NC, Nagappan J, et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature. 2013;500:340-344. DOI: 10.1038/nature12356
  • Casassa LF, Beaver CW, Mireles M, Larsen RC, Hopfer H, Heymann H, et al. Influence of fruit maturity, maceration length, and ethanol amount on chemical and sensory properties of merlot wines. American Journal of Enology and Viticulture. 2013;64:437-449. DOI: 10.5344/ajev.2013.13059