Evaluating the Potential and Synergetic Effects of Microcins against Multidrug-Resistant Enterobacteriaceae

  1. Telhig, Soufiane 14
  2. Ben Said, Laila 1
  3. Torres, Carmen 3
  4. Rebuffat, Sylvie 4
  5. Zirah, Séverine 4
  6. Fliss, Ismail 12
  1. 1 Food Science Department, Food and Agriculture Faculty, Laval University, Québec City, Québec, Canada
  2. 2 Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
  3. 3 Department of Food and Agriculture, University of La Rioja, Logrono, Spain
  4. 4 Laboratoire Molécules de Communication et Adaptation des Microorganismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
Revista:
Microbiology Spectrum

ISSN: 2165-0497

Año de publicación: 2022

Tipo: Artículo

DOI: 10.1128/SPECTRUM.02752-21 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Microbiology Spectrum

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

The advent of multidrug-resistant bacteria has hampered the development of new antibiotics, exacerbating their morbidity and mortality. In this context, the gastrointestinal tract reveals a valuable source of novel antimicrobials. Microcins are bacteriocins produced by members of the family Enterobacteriaceae, which are endowed with a wide diversity of structures and mechanisms of action, and exert potent antibacterial activity against closely related bacteria. In this study, we investigated the antibacterial activities of four microcins against 54 Enterobacteriaceae isolates from three species (Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica). The selected microcins, microcin C (McC, nucleotide peptide), microcin J25 (MccJ25, lasso peptide), microcin B17 (MccB17, linear azol(in)e-containing peptide), and microcin E492 (MccE492, siderophore peptide) carry different post-translational modifications and have distinct mechanisms of action. MICs and minimal bactericidal concentrations (MBC) of the microcins were measured and the efficacy of combinations of the microcins together or with antibiotics was assessed to identify potential synergies. Every isolate showed sensitivity to at least one microcin with MIC values ranging between 0.02 μM and 42.5 μM. Among the microcins tested, McC exhibited the broadest spectrum of inhibition with 46 strains inhibited, closely followed by MccE492 with 38 strains inhibited, while MccJ25 showed the highest activity. In general, microcin activity was observed to be independent of antibiotic resistance profile and strain genus. Of the 42 tested combinations, 20 provided enhanced activity (18 out of 20 being microcin–antibiotic combinations), with two being synergetic.

Referencias bibliográficas

  • 10.1093/femsre/fux053
  • Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P T 40:277–283.
  • 10.1038/ncomms3151
  • 10.3389/fmicb.2019.00456
  • 10.1038/s41467-020-15222-y
  • 10.1016/j.scitotenv.2020.140804
  • 10.1111/bcp.12401
  • 10.1093/jac/dku572
  • 10.3389/fmicb.2020.01416
  • WHO. 2017. The world is running out of antibiotics WHO report confirms. https://www.who.int/news/item/20-09-2017-the-world-is-running-out-of-antibiotics-who-report-confirms.
  • 10.3201/eid1311.070674
  • 10.1093/cid/ciq238
  • 10.1371/journal.pone.0162369
  • 10.1128/JCM.01834-17
  • 10.1021/acsinfecdis.5b00097
  • 10.1038/nmicrobiol.2017.1
  • 10.1126/science.1254766
  • 10.1080/19490976.2018.1455790
  • 10.1042/BST20120183
  • 10.3389/fmicb.2019.02261
  • 10.3389/fmicb.2020.586433
  • 10.1039/c2np20085f
  • 10.1039/d0np00027b
  • 10.1099/mic.0.28690-0
  • 10.1007/978-3-540-36604-1_2
  • 10.1038/nature20557
  • 10.1371/journal.pone.0033351
  • 10.1136/gut.2003.025239
  • 10.1016/j.bbi.2016.02.020
  • 10.1038/s41598-017-10346-6
  • 10.1371/journal.pone.0212856
  • 10.1080/19490976.2021.1900995
  • 10.1371/journal.pone.0031113
  • 10.3389/fmicb.2015.01020
  • 10.1007/s00248-015-0645-0
  • 10.1371/journal.pone.0164036
  • 10.1080/14787210.2020.1705155
  • 10.1074/jbc.M513174200
  • 10.1021/ja0367703
  • 10.1016/j.molcel.2004.05.017
  • 10.1126/science.274.5290.1188
  • 10.1073/pnas.91.10.4519
  • 10.1016/j.biochi.2006.12.005
  • 10.1074/jbc.M400228200
  • 10.1038/s41421-021-00253-6
  • 10.1086/381972
  • Eliopoulos G, Moellering R. 1996. Antimicrobial combinations, p 330–396. In Lorian V (ed), Antibiotics in laboratory medicine. The Williams & Wilkins Co, Baltimore, MD.
  • 10.1128/AAC.01222-13
  • 10.1093/ofid/ofy357
  • 10.1038/s41579-021-00569-w
  • 10.1016/j.chembiol.2010.02.010
  • 10.3390/molecules22030432
  • 10.1111/1462-2920.15045
  • 10.1128/JB.183.15.4543-4550.2001
  • 10.1128/JB.00206-07
  • 10.1038/s41579-020-00443-1
  • 10.1086/429323
  • 10.1073/pnas.70.8.2224
  • 10.1093/emboj/19.1.1
  • 10.1021/bi00474a024
  • 10.1038/nchembio.1499
  • 10.1016/s0969-2126(01)00631-1
  • 10.1074/jbc.M209425200
  • 10.1016/s0092-8674(01)00286-0
  • 10.1099/00221287-132-6-1685
  • 10.1099/mic.0.000249
  • 10.1128/AAC.33.8.1184
  • 10.1093/milmed/usx150
  • 10.18637/jss.v025.i01
  • Kassambara A MF. 2017. Practical guide to principal component methods in R: PCA M (CA) FAMD MFA HCPC factoextra. https://CRAN.R-project.org/package=factoextra.
  • Ploty Inc. 2015. Collaborative data science publisher: Plotly Technologies Inc. https://plotly.com.
  • 10.1074/jbc.270.40.23520