Antimicrobial resistance of Enterococcus species isolated from wild mammals in Aragón, Spain

  1. García, Leticia Alcalá 2
  2. Torres, Carmen 1
  3. López, Antonio Rezusta 3
  4. Rodríguez, Carmelo Ortega 2
  5. Valencia, Carmen Simón 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  3. 3 Hospital Miguel Servet
    info

    Hospital Miguel Servet

    Zaragoza, España

    ROR https://ror.org/01r13mt55

Revista:
Journal of Veterinary Research

ISSN: 2450-8608

Año de publicación: 2022

Volumen: 0

Número: 0

Tipo: Artículo

DOI: 10.2478/JVETRES-2022-0020 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Veterinary Research

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

Antimicrobial resistance is currently one of the major public health threats. In order to prevent its spread, the WHO, OIE and FAO have formed an alliance to promote the study of antibiotic resistance evolution in human, animal and environmental bacteria posing a public health threat; however, the studies performed in wild animals are scarce so far. The main objective of this study was to assess the antibiotic resistance of Enterococcus spp. isolated from wild mammals in Aragón, Spain.Rectal samples were collected from 103 wild mammals – 70 hunt prey and 33 rescued animals. Isolates were identified by matrix-assisted laser desorption/ionisation–time of flight mass spectrometry and susceptibility tests to 10 antibiotics were also carried out. Statistical analysis was performed (P ≤ 0.05).A total of 126 isolates of seven different Enterococcus species were recovered. Among them, E faecalis (37.60%), E. casseliflavus (20.63%) and E. faecium (17.46%) were the most prevalent. The antibiotics quinupristin-dalfopristin and ciprofloxacin most frequently lost efficacy against the isolates. Multi-drug resistance was more prevalent in enterococci isolated from the rescued mammals.This study found resistance widely distributed among enterococci isolated from the studied mammals. This points to the need for additional study of its genetic determinants and investigation of the sources and measures to avoid contributory environmental contamination.

Referencias bibliográficas

  • Acar J., Casewell M., Freeman J., Friis C., Goossens H.: Avoparcin and virginiamycin as animal growth promoters: a plea for science in decision-making. Clin Microbiol Infect 2000, 6, 477–482, doi: 10.1046/j.1469-0691.2000.00128.
  • Allen H.K., Moe L.A., Rodbumrer J., Gaarder A., Handelsman J.: Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 2009, 3, 243–251, doi: 10.1038/ismej.2008.86.
  • Arias C.A., Murray B.E.: The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 2012, 10, 266–278, doi: 10.1038/nrmicro2761.
  • Bennett J.E., Dolin R., Blaser M.J.: Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, Volume 1, Eighth Edition, Elsevier, Philadelphia, 2015.
  • Beukers A.G., Chaves A.V., Ward M.P., Zaheer R., McAllister T.A., Goji N., Amoako K.K.: Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiol 2017, 17, 52, doi: 10.1186/s12866-017-0962-1.
  • Brandão A., Almeida T., Muñoz-Atienza E., Torres C., Igrejas G., Hernández P.E., Cintas L.M., Poeta P., Herranz C.: Antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. of human and animal origin isolated in Portugal. Arch Microbiol 2010, 192, 927–936, doi: 10.1007/s00203-010-0619-z.
  • Carroll D., Wang J., Fanning S., McMahon B.J.: Antimicrobial Resistance in Wildlife: Implications for Public Health. Zoonoses Public Health 2015, 62, 534–542, doi: 10.1111/zph.12182.
  • Clinical and Laboratory Standards Institute: M100-S28 Performance Standards for Antimicrobial Susceptibility Testing, CLSI, Wayne, 2018.
  • Chokshi A., Sifri Z., Cennimo D., Horng H.: Global contributors to antibiotic resistance. J Glob Infect Dis 2019, 11, 36–42.
  • Dahl K.H., Simonsen G.S., Olsvik O., Sundsfjord A.: Heterogeneity in the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrob Agents Chemother 1999, 43, 1105–1110, doi: 10.1128/AAC.43.5.1105.
  • Dec M., Stępień-Pyśniak D., Gnat S., Fratini F., Urban-Chmiel R., Cerri D., Winiarczyk S., Turchi B.: Antibiotic Susceptibility and Virulence Genes in Enterococcus Isolates from Wild Mammals Living in Tuscany, Italy. Microb Drug Resist 2020, 26, 505–519, doi: 10.1089/mdr.2019.0052.
  • Duran G.A., Raoult D., Dubourg G.: Antibiotic discovery: history, methods and perspectives. J Antimicrob Agents 2019, 53, 371–382, doi: 10.1016/j.ijantimicag.2018.11.010.
  • European Centre for Disease Prevention and Control: Surveillance atlas of infectious diseases. https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases.
  • European Medicines Agency: EMA/CVMP/CHMP/682198/2017 – Committee for Medicinal Products for Veterinary use (CVMP), Committee for Medicinal Products for Human Use (CHMP): Categorisation of antibiotics in the European Union. https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf.
  • Fauna Ibérica: Erizo europeo (in Spanish). https://www.faunaiberica.org/erizo-europeo.
  • Hamarova L., Kopcakova A., Kocianova-Adamcova M., Piknova M., Javorsky P., Pristas P.: Antimicrobial Resistance of Enterococci from Wild Animals in Slovakia. Pol J Environ Stud 2019, 30, 2085–2091, doi: 10.15244/pjoes/126371.
  • Hammerum A.M.: Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 2012, 18, 619–625, doi: 10.1111/j.1469-0691.2012.03829.
  • Hernando-Amado S., Coque T.M., Baquero F., Martínez J.L.: Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Front Microbiol 2020, 11, 1914, doi: 10.3389/fmicb.2020.01914.
  • Hershberger E., Oprea S.F., Donabedian S.M., Perri M., Bozigar P., Bartlett P., Zervos M.J.: Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrob Chemother 2005, 55, 127–130, doi: 10.1093/jac/dkh508.
  • Hollenbeck B.L., Rice L.B.: Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–433, doi: 10.4161/viru.21282.
  • Kristich C.J., Rice L.B., Arias C.A.: Enterococcal Infection– Treatment and Antibiotic Resistance. In: Enterococci: From Commensals to Leading Causes of Drug Resistant Infection, edited by M.S. Gilmore, D.B. Clewell, Y. Ike, N. Shankar, Massachusetts Eye and Ear Infirmary, Boston, 2014.
  • Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T., Monnet D.L.: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012, 18, 268–281, doi: 10.1111/j.1469-0691.2011.03570.x.
  • Marti E., Variatza E., Balcazar J.L.: The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 2014, 22, 36–41, doi: 10.1016/j.tim.2013.11.001.
  • Nowakiewicz A., Zięba P., Gnat S., Trościańczyk A., Osińska M., Łagowski D., Kosior-Korzecka U., Puzio I.: A significant number of multi-drug resistant Enterococcus faecalis in wildlife animals; long-term consequences and new or known reservoirs of resistance? Sci Total Environ 2020, 705, 135830, doi: 10.1016/j.scitotenv.2019.135830.
  • Poeta P., Costa D., Sáenz Y., Klibi N., Ruiz-Larrea F., Rodrigues J., Torres C.: Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J Vet Med Ser B Inf Dis Vet Public Health 2005, 52, 396–402, doi: 10.1111/j.1439-0450.2005.00881.x.
  • Soltani M., Beighton D., Philpott-Howard J., Woodford N.: Mechanisms of resistance to quinupristin-dalfopristin among isolates of Enterococcus faecium from animals, raw meat, and hospital patients in Western Europe. Antimicrob Agents Chemother 2000, 44, 433–436, doi: 10.1128/AAC.44.2.433-436.2000.
  • Suzuki S., Pruden A., Virta M., Zhang T.: Editorial: Antibiotic Resistance in Aquatic Systems. Front Microbiol 2017, 8, 14, doi: 10.3389/fmicb.2017.00014.
  • Tasho R.P., Cho J.Y.: Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci Total Environ 2016, 563–564, 366–376, doi: 10.1016/j.scitotenv. 2016.04.140.
  • Wang S., Guo Y., Lv J., Qi X., Li D., Chen Z., Zhang X., Yu F., Wang L.: Characteristic of Enterococcus faecium clinical isolates with quinupristin/dalfopristin resistance in China. BMC Microbiol 2016, 16, 1–5, doi: 10.1186/s12866-016-0863-8.
  • Wegener H.C.: Appendix A15: Antibiotic resistance–linking human and animal health. In: Improving Food Safety Through a One Health Approach: Workshop Summary, National Academies Press, Washington (DC) 2012, https://www.ncbi.nlm.nih.gov/books/NBK114485/.
  • Wei L., Wu Q., Zhang J., Guo W., Chen M., Xue L., Wang J., Ma L.: Prevalence and Genetic Diversity of Enterococcus faecalis Isolates from Mineral Water and Spring Water in China. Front Microbiol 2017, 8, 1109, doi: 10.3389/fmicb.2017.01109.
  • Woodford N., Morrison D., Johnson A.P., Briant V., George R.C., Cookson B.: Application of DNA probes for rRNA and vanA genes to investigation of a nosocomial cluster of vancomycin-resistant enterococci. J Clin Microbiol 1993, 31, 653–658.
  • World Health Organization Antimicrobial Resistance Division, National Action Plans and Monitoring and Evaluation: Global action plan on antimicrobial resistance. WHO Press, Geneva, 2015, https://www.who.int/publications/i/item/9789241509763.
  • World Health Organization Newsroom Spotlight: 10 global health issues to track in 2021, https://www.who.int/news-room/spotlight/10-global-health-issues-to-track-in-2021.