Bacteriocin-Like Inhibitory Substances in Staphylococci of Different Origins and Species With Activity Against Relevant Pathogens

  1. Fernández-Fernández, Rosa 1
  2. Lozano, Carmen 1
  3. Eguizábal, Paula 1
  4. Ruiz-Ripa, Laura 1
  5. Martínez-Álvarez, Sandra 1
  6. Abdullahi, Idris Nasir 1
  7. Zarazaga, Myriam 1
  8. Torres, Carmen 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revue:
Frontiers in Microbiology

ISSN: 1664-302X

Année de publication: 2022

Volumen: 13

Type: Article

DOI: 10.3389/FMICB.2022.870510 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Frontiers in Microbiology

Dépôt institutionnel: lock_openAccès ouvert Editor

Résumé

Bacteriocins are antimicrobial peptides with relevance in the modulation of human and animal microbiota that have gained interest in biomedical and biotechnological applications. In this study, the production of bacteriocin-like inhibitory substances (BLIS) was tested among a collection of 890 staphylococci of different origins (humans, animals, food, and the environment) and species, both coagulase-positive (CoPS, 238 isolates of 3 species) and coagulase-negative staphylococci (CoNS, 652 isolates of 26 species). Of the 890 staphylococci, 60 (6.7%) showed antimicrobial activity by the spot-on-lawn method against at least one of the 25 indicator bacteria tested. BLIS-producer (BLIS+) isolates were detected in 8.8% of CoPS and 6.0% of CoNS. The staphylococcal species with the highest percentages of BLIS+ isolates were S. chromogenes (38.5%), S. pseudintermedius (26.7%), and S. warneri (23.1%). The production of BLIS was more frequently detected among isolates of pets, wild animals, and food. Moreover, 13 BLIS+ isolates showed wide antimicrobial activiy spectrum, and 7 of these isolates (of species S. aureus, S. pseudintermedius, S. sciuri, and S. hominis) demonstrated antimicrobial activity against more than 70% of the indicator bacteria tested. The genetic characterization (by PCR and sequencing) of the 60 BLIS+ isolates revealed the detection of (a) 11 CoNS and CoPS isolates carrying putative lantibiotic-like genes; (b) 3 S. pseudintermedius isolates harboring the genes of BacSp222 bacteriocin; and (c) 2 S. chromogenes isolates that presented the gene of a putative cyclic bacteriocin (uberolysin-like), being the first report in this CoNS species. Antimicrobial susceptibility testing was performed in BLIS+ isolates and one-third of the CoNS isolates showed susceptibility to all antibiotics tested, which also lacked the virulence genes studied. These BLIS+ CoNS are good candidates for further characterization studies.

Information sur le financement

Références bibliographiques

  • Bannoehr, (2007), J. Bacteriol., 189, pp. 8685, 10.1128/JB.01150-07
  • Bastos, (2009), Curr. Pharm. Biotechnol., 10, pp. 38, 10.2174/138920109787048580
  • Becker, (2015), Manual of Clinical Microbiology, pp. 354, 10.1128/9781555817381.ch21
  • Carlin Fagundes, (2017), Microbiol. Res., 198, pp. 36, 10.1016/j.micres.2017.02.003
  • Carnio, (2000), Appl. Environ. Microbiol., 66, pp. 2378, 10.1128/AEM.66.6.2378-2384.2000
  • Cotter, (2005), Nat. Rev. Microbiol., 3, pp. 777, 10.1038/nrmicro1273
  • Cotter, (2013), Nat. Rev. Microbiol., 11, pp. 95, 10.1038/nrmicro2937
  • Cundliffe, (1981), Eur. J. Biochem., 118, pp. 47, 10.1111/j.1432-1033.1981.tb05484.x
  • Dajani, (1969), J. Bacteriol., 97, pp. 985, 10.1128/jb.97.3.985-991.1969
  • de Freire Bastos, (2020), Appl. Microbiol. Biotechnol., 104, pp. 10339, 10.1007/s00253-020-10946-9
  • (2021)
  • Eveno, (2021), Probiotics Antimicrob. Proteins, 13, pp. 208, 10.1007/s12602-020-09687-y
  • França, (2021), Pathogens, 10, pp. 170, 10.3390/pathogens10020170
  • Gómez, (2017), FEMS Microbiol. Ecol., 93, pp. fiw208, 10.1093/femsec/fiw208
  • Gómez-Sanz, (2013), Comp. Immunol. Microbiol. Infect. Dis., 36, pp. 83, 10.1016/j.cimid.2012.10.001
  • Heilbronner, (2021), Nat. Rev. Microbiol., 19, pp. 726, 10.1038/s41579-021-00569-w
  • Heng, (2007), Bacteriocins:Ecology and Evolution, pp. 45, 10.1007/978-3-540-36604-1_4
  • James, (1991), N. Z. Dent. J., 87, pp. 80
  • Janek, (2016), PLoS Pathog., 12, pp. e1005812, 10.1371/journal.ppat.1005812
  • Kellner, (1988), Eur. J. Biochem., 177, pp. 53, 10.1111/j.1432-1033.1988.tb14344.x
  • Kranjec, (2020), NPJ Biofilms Microbiomes, 6, pp. 58, 10.1038/s41522-020-00166-4
  • Kumar, (2017), Sci. Rep., 7, pp. 10447, 10.1038/s41598-017-11020-7
  • Lozano, (2017), Vector Borne Zoonotic Dis., 17, pp. 268, 10.1089/vbz.2016.2048
  • Lynch, (2019), PLoS One, 14, pp. e0223541, 10.1371/journal.pone.0223541
  • Mak, (2018), Pet-to-Man Travelling Staphylococci: A World in Progress, pp. 161, 10.1016/B978-0-12-813547-1.00013-3
  • Mama, (2019), Comp. Immunol. Microbiol. Infect. Dis., 64, pp. 125, 10.1016/j.cimid.2019.03.006
  • Netz, (2002), J. Mol. Biol., 319, pp. 745, 10.1016/S0022-2836(02)00368-6
  • Netz, (2001), J. Mol. Biol., 311, pp. 939, 10.1006/jmbi.2001.4885
  • Neubauer, (1999), J. Bacteriol., 181, pp. 1481, 10.1128/JB.181.5.1481-1488.1999
  • Newstead, (2020), Antibiotics, 9, pp. 40, 10.3390/antibiotics9020040
  • Nhung, (2017), Front. Vet. Sci., 4, pp. 126, 10.3389/fvets.2017.00126
  • O’Sullivan, (2020), J. Bacteriol., 15, pp. e00639-19, 10.1128/JB.00639-19
  • O’Sullivan, (2019), FEMS Microbiol. Ecol., 95, pp. fiy241, 10.1093/femsec/fiy241
  • Penna, (2021), Sci. Rep., 11, pp. 4724, 10.1038/s41598-021-83993-5
  • Perreten, (2010), J. Antimicrob. Chemother., 65, pp. 1145, 10.1093/jac/dkq078
  • Potter, (2014), Microbiology, 160, pp. 917, 10.1099/mic.0.075689-0
  • Prichula, (2021), Mar. Drugs, 19, pp. 328, 10.3390/md19060328
  • Ruiz-Ripa, (2020), Microorganisms, 8, pp. 1317, 10.3390/microorganisms8091317
  • Ruiz-Ripa, (2021), BMC Vet. Res., 17, pp. 42, 10.1186/s12917-020-02726-4
  • Ruiz-Ripa, (2019), J. Appl. Microbiol., 127, pp. 284, 10.1111/jam.14301
  • Sashihara, (2000), Biosci. Biotechnol. Biochem., 64, pp. 2420, 10.1271/bbb.64.2420
  • Soltani, (2021), FEMS Microbiol. Rev., 8, pp. fuaa039, 10.1093/femsre/fuaa039
  • Swift, (2019), Sci. Total Environ., 649, pp. 12, 10.1016/j.scitotenv.2018.08.180
  • Untergasser, (2012), Nucleic Acids Res., 40, pp. e115, 10.1093/nar/gks596
  • Wilaipun, (2008), Biosci. Biotechnol. Biochem., 72, pp. 2232, 10.1271/bbb.80239
  • Wladyka, (2015), Sci. Rep., 5, pp. 14569, 10.1038/srep14569
  • Wladyka, (2013), Appl. Microbiol. Biotechnol., 97, pp. 7229, 10.1007/s00253-012-4578-y
  • Zhang, (2005), J. Clin. Microbiol., 43, pp. 5026, 10.1128/JCM.43.10.5026-5033.2005
  • Zimina, (2020), Antibiotics, 9, pp. 553, 10.3390/antibiotics9090553
  • Zipperer, (2016), Nature, 535, pp. 511, 10.1038/nature18634