On the Mechanism of Halogen Atom Transfer from C−X Bonds to α‐Aminoalkyl Radicals: A Computational Study
-
1
Universidad de La Rioja
info
ISSN: 1434-193X, 1099-0690
Año de publicación: 2022
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: European Journal of Organic Chemistry
Resumen
Generation of carbon centered radicals from organic halides represents a powerful tool in modern organic chemistry, especially in the context of photoredox catalysis. However, activation of carbon–halogen bonds is usually promoted by toxic and hazardous tin reagents. Alternatively, α-aminoalkyl radicals have emerged as a cheap and efficient halogen atom transfer (XAT) reagents, although the activation mechanism is still underexplored with respect to hydrogen atom transfer (HAT) chemistry. Herein, we report a computational systematic evaluation of four different α-aminoalkyl radicals on the Halogen Atom Transfer (XAT) mechanism. We have evaluated up to 32 reactions, including two different types of substrates (Ph−X and Cy−X). This systematic study aims to provide a big picture on the key effects in this reactivity including the hybridization of carbon, the nature of the halogen, and the electronics/sterics of the α-aminoalkyl radical.
Información de financiación
Financiadores
Referencias bibliográficas
- 10.1038/s41467-019-13887-8
- 10.1021/acsomega.1c05787
- 10.1021/acscatal.6b03205
- 10.1021/jacs.1c07785
- 10.1039/D1CC05850A
- 10.1021/acs.joc.6b01449
- 10.1021/cr300503r
- 10.1039/D0SC06306A
- 10.1002/anie.201505731
- 10.1002/ange.201505731
- Siddiqui R., (2020), J. Org. Chem., 16, pp. 248
- Kosso A. R. O., (2021), Chem. Sci., 12, pp. 6964, 10.1039/D1SC00998B
- Le Sauz E., (2021), Angew. Chem. Int. Ed., 60, pp. 5357, 10.1002/anie.202014876
- 10.1002/ange.202014876
- 10.1021/ja00468a005
- Tellin J. C., (2014), Science, 345, pp. 433
- 10.1039/D1QO01570B
- 10.1039/C9CC08348K
- 10.1038/nchem.1452
- 10.1002/anie.201203599
- 10.1002/ange.201203599
- 10.1021/acscatal.6b03205
- 10.1126/science.aba2419
- 10.1021/jacs.1c06768
- 10.1039/D1CC07136J
- 10.1002/anie.202103085
- 10.1007/978-0-387-71481-3_2
- 10.1021/acs.chemrev.1c00558
- Kavita K., (2002), J. Chem. Phys., 117, pp. 2038, 10.1063/1.1489416
- 10.1016/0371-1951(61)80062-3
- Schmittel M., (2001), Electron Transfer in Chemistry
- 10.1039/D1SC03083C
- 10.1021/jacs.1c12649
- 10.1039/D0SC04881J
- 10.1039/b710449a
- St John P. C., (2020), Sci. Data, 7, pp. 244, 10.1038/s41597-020-00588-x
- 10.1021/acs.organomet.5b00582
- 10.1021/jacs.1c07144
- 10.1021/jacs.1c05852
- 10.1002/anie.201814233
- 10.1002/ange.201814233
- Gaussian 16 Revision C.01 M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone G. A. Petersson H. Nakatsuji X. Li M. Caricato A. V. Marenich J. Bloino B. G. Janesko R. Gomperts B. Mennucci H. P. Hratchian J. V. Ortiz A. F. Izmaylov J. L. Sonnenberg D. Williams-Young F. Ding F. Lipparini F. Egidi J. Goings B. Peng A. Petrone T. Henderson D. Ranasinghe V. G. Zakrzewski J. Gao N. Rega G. Zheng W. Liang M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven K. Throssell J. A. Montgomery Jr. J. E. Peralta F. Ogliaro M. J. Bearpark J. J. Heyd E. N. Brothers K. N. Kudin V. N. Staroverov T. A. Keith R. Kobayashi J. Normand K. Raghavachari A. P. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi J. M. Millam M. Klene C. Adamo R. Cammi J. W. Ochterski R. L. Martin K. Morokuma O. Farkas J. B. Foresman D. J. Fox Gaussian Inc. Wallingford CT 2016.
- 10.1039/b810189b
- 10.1007/s00214-007-0310-x
- 10.1002/jcc.10189
- CYLview20; Legault C. Y. Université de Sherbrooke 2020 (http://www.cylview.org).