GoodVibes: automated thermochemistry for heterogeneous computational chemistry data

  1. Guilian Luchini 1
  2. Juan V. Alegre-Requena 1
  3. Ignacio Funes-Ardoiz 2
  4. Robert S. Paton 1
  1. 1 Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
  2. 2 Institute of Organic Chemistry, RWTH Aachen, Aachen, 52074, Germany
Revista:
F1000Research

Ano de publicación: 2020

Volume: 9

Páxinas: 291

Tipo: Artigo

beta Ver similares en nube de resultados
DOI: 10.12688/F1000RESEARCH.22758.1 GOOGLE SCHOLAR lock_openAcceso aberto editor
Repositorio institucional: lock_openAcceso aberto Editor

Resumo

GoodVibes is an open-source Python toolkit for processing the results of quantum chemical calculations. Thermochemical data are not simply parsed, but evaluated by evaluation of translational, rotational, vibrational and electronic partition functions. Changes in concentration, pressure, and temperature can be applied, and deficiencies in the rigid rotor harmonic oscillator treatment can be corrected. Vibrational scaling factors can also be applied by automatic detection of the level of theory and basis set. Absolute and relative thermochemical values are output to text and graphical plots in seconds. GoodVibes provides a transparent and reproducible way to process raw computational data into publication-quality tables and figures without the use of spreadsheets.