Alfabetización computacional en educación infantilDificultades y beneficios en el aula de 3 años

  1. Berciano-Alcaraz, Ainhoa 1
  2. Salgado-Somoza, María 2
  3. Jiménez-Gestal, Clara 3
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  2. 2 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

  3. 3 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Revista Electrónica Educare

ISSN: 1409-4258

Año de publicación: 2022

Volumen: 26

Número: 2

Tipo: Artículo

DOI: 10.15359/REE.26-2.15 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Revista Electrónica Educare

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

Objetivo. En este trabajo se analiza el tipo de dificultades y argumentación que muestran las niñas y niños de tres años, frente a tareas relacionadas con la programación y la robótica educativa en el aula. Metodología. Se ha elaborado un diseño teórico y se ha implementado una secuencia de actividades en un aula de niños y niñas de 3 años de edad y se ha realizado un estudio de casos con 8 de los participantes. Análisis de resultados. Entre los resultados más destacados se han identificado dificultades de tres tipos, las derivadas de las características del robot, las asociadas a la dimensión comprensión acción-instrucción del pensamiento computacional y las asociadas a la etapa cognitiva de los niños y niñas. Conclusiones. El análisis de los argumentos expresados en el desarrollo de la tarea permite concluir que el uso de robótica educativa en edades tempranas favorece el desarrollo de la alfabetización computacional, lo que hace recomendable su inclusión entre las actividades de aula.

Referencias bibliográficas

  • Alsina, Á. y Acosta Inchaustegui, Y. (2018). Iniciación al álgebra en educación infantil a través del pensamiento computacional: Una experiencia sobre patrones con robots educativos programables. Revista Iberoamericana de Educación Matemática, 14(52), 218-235. https://union.fespm.es/index.php/UNION/issue/view/59
  • Bellas, F., Salgado, M., Blanco, T. F. y Duro, R. J. (2019). Robotics in primary school: A realistic mathematics approach. En L. Daniela (Ed.), Smart Learning with Educational Robotics. Using robots to scaffold learning outcomes (pp.149-182). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-19913-5_6
  • Bers, M. U., Flannery, L., Kazakoff, E. R. y Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020
  • Botero Espinosa, J. (2018). Educación STEM. Introducción a una nueva forma de enseñar y aprender. STEM Educación Colombia.
  • Bravo Sánchez, F. Á. y Forero Guzmán, A. (2012). La robótica como un recurso para facilitar el aprendizaje y desarrollo de competencias generales. Teoría de la Educación. Educación y Cultura en la Sociedad de la Información, 13(2), 120-136. https://doi.org/10.14201/eks.9002
  • Diago Nebot, P. D., Arnau Vera, D. y González-Calero Somoza, J. A. (2018). Elementos de resolución de problemas en primeras edades escolares con Bee-bot. Edma 0-6: Educación Matemática en la Infancia, 7(1), 12-41. https://doi.org/10.24197/edmain.1.2018.12-41
  • Edo, M., Blanch, S., y Anton, M. (Coords.). (2016). El juego en la primera infancia. Octaedro.
  • Ferrada, C., Díaz-Levicoy, D., Salgado-Orellana, N. y Parraguez, R. (2019). Propuesta de actividades STEM con Bee-bot en matemática. Edma 0-6: Educación Matemática en la Infancia, 8(1), 33-43. https://doi.org/10.24197/edmain.1.2019.33-43
  • Freudenthal, H. (1991). Revisiting mathematics education. China Lectures. Springer.
  • García Valiente, M. y Navarro Montaño, M. J. (2017). Robótica para todos en educación infantil. Paideia. Revista de Educación, (60), 81-104. http://www.revistapaideia.cl/index.php/PAIDEIA/article/view/164/126
  • García-Valcárcel-Muñoz-Repiso, A. y Caballero-González, Y.-A. (2019). Robótica para desarrollar el pensamiento computacional en educación infantil. Comunicar, 27(59), 63-72. https://doi.org/10.3916/C59-2019-06
  • Gaudiello, I. y Zibetti, E. (2016). Learning robotics, with robotics, by robotics: Educational robotics (Vol. 3). Wiley. https://doi.org/10.1002/9781119335740
  • Instituto Nacional de Tecnologías Educativas y de Formación de Profesorado. (2018). Programación, robótica y pensamiento computacional en el aula. Situación en España, enero 2018. Ministerio de Educación, Cultura y Deporte. https://bit.ly/2UqTtRh
  • Freeman, A., Adams Becker, S., Cummins, M., Davis, A., y Hall Giesinger, C. (2017). Resumen Informe Horizon 2017. Educación primaria y secundaria. INTEF. https://bit.ly/2vF55aY
  • McClure, E. R., Guernsey, L., Clements, D. H., Bales, S. N., Nichols, J., Kendall-Taylor, N. y Levine, M. H. (2017). STEM starts early: Grounding science, technology, engineering, and math education in early childhood. The Joan Ganz Cooney Center at Sesame Workshop.
  • Novo, M. L, Alsina, Á., Marbán, J.-M y Berciano, A. (2017). Inteligencia conectiva para la educación matemática infantil. Comunicar, 25(52), 29-39. https://doi.org/10.3916/C52-2017-03
  • Odorico, A. (2004). Marco teórico para una robótica pedagógica. Revista de Informática Educativa y Medios Audiovisuales, 1(3), 34-46. http://laboratorios.fi.uba.ar/lie/Revista/Articulos/010103/A4oct2004.pdf
  • Organisation for Economic Cooperation and Development. (2015). Students, computers and learning: Making the connection. PISA, OECD Publishing. https://www.oecd.org/fr/publications/students-computers-and-learning-9789264239555-en.htm
  • Papert, S. (1995). La máquina de los niños. Replanteársela educación en la era de los ordenadores. Paidós Ibérica Ediciones.
  • Piaget, J. (1962). Play, dreams and imitation in childhood. Norton.
  • Piaget, J. e Inhelder, B. (1982). Psicología del niño (11.a ed.). Morata.
  • Pinto Salamanca, M. L., Barrera Lombana, N. y Pérez Holguín, W. J. (2010). Uso de la robótica educativa como herramienta en los procesos de enseñanza. I2+D Ingeniería, Investigación y Desarrollo, 10(1), 15-23. https://revistas.uptc.edu.co/revistas/index.php/ingenieria_sogamoso/article/view/912
  • Pintrich, D. R. y Schunk, D. H. (2001). Motivation in education. Theory, research, and applications (2.a ed.). Pearson Education.
  • Ruiz-Velasco Sánchez, E. (2007). Educatrónica. Innovación en el aprendizaje de las ciencias y la tecnología. Ediciones Díaz de Santos.
  • Sáinz, M. C. y Argos, J. (1998). Educación infantil: Contenidos, procesos y experiencias. Narcea.
  • Scaradozzi, D., Sorbi, L., Pedale, A., Valzano, M. y Vergine, C. (2015). Teaching robotics at the primary school: an innovative approach. Procedia- Social and Behavioral Sciences, 174, 3838-3846. https://doi.org/10.1016/j.sbspro.2015.01.1122
  • Shute, V. J., Sun, C. y Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22 142-158. https://doi.org/10.1016/j.edurev.2017.09.003
  • Sullivan, A. y Bers, M. U. (2016). Robotics in the early childhood classroom: Learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3-20. https://doi.org/10.1007/s10798-015-9304-5
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  • Zimmerman, B. J. (1986). Becoming a self-regulated learner: Which are the key subprocesses? Contemporary Educational Psychology, 11(4), 307-313. https://doi.org/10.1016/0361-476X(86)90027-5 s