An Optimal Thirty-Second-Order Iterative Method for Solving Nonlinear Equations and a Conjecture

  1. Varona, Juan Luis 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Año de publicación: 2022

Volumen: 21

Número: 2

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1007/S12346-022-00572-3 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Qualitative theory of dynamical systems

Repositorio institucional: lock_openAcceso abierto Editor lock_openAcceso abierto Editor

Resumen

Many multipoint iterative methods without memory for solving non-linear equations in one variable are found in the literature. In particular, there are methods that provide fourth-order, eighth-order or sixteenth-order convergence using only, respectively, three, four or five function evaluations per iteration step, thus supporting the Kung-Traub conjecture on the optimal order of convergence. This paper shows how to find optimal high order root-finding iterative methods by means of a general scheme based in weight functions. In particular, we explicitly give an optimal thirty-second-order iterative method; as long as we know, an iterative method with that order of convergence has not been described before. Finally, we give a conjecture about optimal order multipoint iterative methods with weights.

Información de financiación

Referencias bibliográficas

  • 1. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. (N.S.) 10, 3–35 (2004)
  • 2. Babajee, D.K.R., Thukral, R.: On a 4-point sixteenth-order King family of iterative methods for solving nonlinear equations. Int. J. Math. Math. Sci. 2012, 13 (2012)
  • 3. Basto, M., Abreu, T., Semiao, V., Calheiros, F.L.: Convergence and dynamics of structurally identical root finding methods. Appl. Numer. Math. 120, 257–269 (2017)
  • 4. Behl, R., Amat, S., Magreñán, Á.A., Motsa, S.S.: An efficient optimal family of sixteenth order methods for nonlinear models. J. Comput. Appl. Math. 354, 271–285 (2019)
  • 5. Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: A new efficient and optimal sixteenth-order scheme for simple roots of nonlinear equations. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 60(108), no. 2, 127–140 (2017)
  • 6. Behl, R., Gutiérrez, J.M., Argyros, I.K., Alshomrani, A.S.: Efficient optimal families of higher-order iterative methods with local convergence. Appl. Anal. Discrete Math. 14(3), 729–753 (2020)
  • 7. Chun, C., Neta, B.: Comparative study of eighth-order methods for finding simple roots of nonlinear equations. Numer. Algorithms 74(4), 1169–1201 (2017)
  • 8. Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: Two optimal general classes of iterative methods with eighth-order. Acta Appl. Math. 134, 61–74 (2014)
  • 9. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)
  • 10. Geum, Y.H., Kim, Y.I.: A biparametric family of four-step sixteenth-order root-finding methods with the optimal efficiency index. Appl. Math. Lett. 24(8), 1336–1342 (2011)
  • 11. Geum, Y.H., Kim, Y.I.: A biparametric family of optimally convergent sixteenth-order multipoint methods with their fourth-step weighting function as a sum of a rational and a generic two-variable function. J. Comput. Appl. Math. 235(10), 3178–3188 (2011)
  • 12. Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: On some computational orders of convergence. Appl. Math. Lett. 23(4), 472–478 (2010)
  • 13. Gutiérrez, J.M., Varona, J.L.: Superattracting extraneous fixed points and n-cycles for Chebyshev’s method on cubic polynomials. Qual. Theory Dyn. Syst. 19(2), 23 (2020)
  • 14. Herceg, D., Herceg, D.: Eighth order family of iterative methods for nonlinear equations and their basins of attraction. J. Comput. Appl. Math. 343, 458–480 (2018)
  • 15. Herceg, D., Petkovi´c, I.: Computer visualization and dynamic study of new families of root-solvers. J. Comput. Appl. Math. 401, 16 (2022)
  • 16. Hueso, J.L., Martínez, E., Teruel, C.: Multipoint efficient iterative methods and the dynamics of Ostrowski’s method. Int. J. Comput. Math. 96(9), 1687–1701 (2019)
  • 17. Kalantari, B.: Polynomial Root-Finding and Polynomiography. World Scientific, Singapore (2009)
  • 18. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 634–651 (1974)
  • 19. Lotfi, T., Soleymani, F., Sharifi, S., Shateyi, S., Khaksar Haghani, F.: Multipoint iterative methods for finding all the simple zeros in an interval. J. Appl. Math. 2014, 13 (2014)
  • 20. Maroju, P., Behl, R., Motsa, S.S.: Some novel and optimal families of King’s method with eighth and sixteenth-order of convergence. J. Comput. Appl. Math. 318, 136–148 (2017)
  • 21. Matthies, G., Salimi, M., Sharifi, S., Varona, J.L.: An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics. Jpn. J. Ind. Appl. Math. 33(3), 751–766 (2016)
  • 22. Neta, B., Scott, M., Chun, C.: Basins of attraction for several methods to find simple roots of nonlinear equations. Appl. Math. Comput. 218(21), 10548–10556 (2012)
  • 23. Ostrowski, A.M.: Solution of Equations and Systems of Equations, 2nd edn. Academic Press, New York (1966)
  • 24. Petkovi´c, M.S.: On a general class of multipoint root-finding methods of high computational efficiency. SIAM J. Numer. Anal. 47(6), 4402–4414 (2010)
  • 25. Petkovi´c,M.S., Petkovi´c, L.D.: Families of optimal multipoint methods for solving nonlinear equations: a survey. Appl. Anal. Discrete Math. 4(1), 1–22 (2010)
  • 26. Sharma, J.R., Argyros, I.K., Kumar, D.: On a general class of optimal order multipoint methods for solving nonlinear equations. J. Math. Anal. Appl. 449(2), 994–1014 (2017)
  • 27. Sharma, J.R., Arora, H.: Efficient Ostrowski-like methods of optimal eighth and sixteenth order convergence and their dynamics. Afrika Matematika 30(5–6), 921–941 (2019)
  • 28. Sharma, J.R., Guha, R.K., Gupta, P.: Improved King’s methods with optimal order of convergence based on rational approximations. Appl. Math. Lett. 26(4), 473–480 (2013)
  • 29. Sharma, J.R., Kumar, S.: Efficient methods of optimal eighth and sixteenth order convergence for solving nonlinear equations. SeMA J. 75(2), 229–253 (2018)
  • 30. Soleymani, F., Shateyi, S., Salmani, H.: Computing simple roots by an optimal sixteenth-order class. J. Appl. Math. 2012, 13 (2012)
  • 31. Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intelligencer 24(1), 37–46 (2002)
  • 32. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)