A protocol for using unmanned aerial vehicles to inspect agro-industrial buildings

  1. Gómez Patrocinio, F. Javier
  2. Tascón, Alberto 1
  1. 1 University of La Rioja, Spain
Informes de la construcción

ISSN: 0020-0883

Ano de publicación: 2021

Volume: 73

Número: 564

Tipo: Artigo

DOI: 10.3989/IC.84138 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Informes de la construcción


Unmanned aerial vehicles, commonly known as drones, have many potential applications in the building industry. Among the most evident of these is inspection of buildings during construction and commissioning and as part of the maintenance strategy throughout service life. Drones can also be combined with thermal imaging for energy assessment of buildings. The present study describes an inspection protocol for agro-industrial buildings that consists of 5 stages, each composed of multiple tasks. The protocol was developed based on previous reports from other sectors, existing regulations and the authors’ own experience. In addition, it was validated through application to a real case: a recently built wine-ageing facility measuring 7,200 m2 with mechanical heating/cooling. The inspection yielded useful graphical information with both visible and infrared video and revealed difficulties, aspects to take into account and precautions to adopt in future use of these systems.

Referencias bibliográficas

  • Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., and Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572-48634.
  • (2) Drešček, U., Kosmatin Fras, M., Tekavec, J., and Lisec, A. (2020). Spatial ETL for 3D building modelling based on unmanned aerial vehicle data in semi-urban areas. Remote Sensing, 12(12), 1972.
  • (3) Kim, S., Kim, S., and Lee, D. E. (2020). Sustainable application of hybrid point cloud and BIM method for tracking construction progress. Sustainability, 12(10), 4106.
  • (4) Martínez-Carricondo, P., Carvajal-Ramírez, F., Yero-Paneque, L., and Agüera-Vega, F. (2020). Combination of nadiral and oblique UAV photogrammetry and HBIM for the virtual reconstruction of cultural heritage. Case study of Cortijo del Fraile in Níjar, Almería (Spain). Building Research and Information, 48(2), 140-159.
  • (5) Chen, K., Reichard, G., and Xu, X. (2019). Opportunities for applying camera-equipped drones towards performance inspections of building facades. In Y. K. Cho, F. Leite, A. Behzadan y C. Wang (Eds.), Computing in Civil Engineering 2019: Smart Cities, Sustainability and Resilience (pp. 113-120). Reston, VA, USA: American Society of Civil Engineers.
  • (6) Nnaji, C., and Karakhan, A. A. (2020). Technologies for safety and health management in construction: Current use, implementation benefits and limitations, and adoption barriers. Journal of Building Engineering, 29, 101212.
  • (7) Davila Delgado, J. M., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., and Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of Building Engineering, 26, 100868.
  • (8) Rakha, T., and Gorodetskky, A. (2018). Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Automation in Construction, 93, 252-264.
  • (9) Grosso, R., Mecca, U., Moglia, G., Prizzon, F., and Rebaudengo, M. (2020). Collecting built environment information using UAVs: Time and applicability in building inspection activities. Sustainability, 12(11), 4731.
  • (10) Vollmer, M., and Möllmann, K. P. (2018). Infrared thermal imaging. Fundamentals, research and applications. Weinheim, Germany: Wiley.
  • (11) Bienvenido-Huertas, D., Rodríguez-Álvaro, R., Moyano, J., Marín, D., and Rico, F. (2019). Estudio comparativo de los métodos para evaluar la transmitancia térmica en cerramientos opacos en el invierno mediterráneo. Informes de la Construcción, 71(554), e288.
  • (12) Cañas, I., Martín, S., and González, I. (2003). Aplicabilidad de la termografía para la inspección de los edificios rurales: Caso de una comarca española. Informes de la Construcción, 55(488), 21-28.
  • (13) Wicker, M., Alduse, B. P., and Jung, S. (2018). Detection of hidden corrosion in metal roofing shingles utilizing infrared thermography. Journal of Building Engineering, 20, 201-207.
  • (14) Eyssautier-Chuine, S., Mouhoubi, K., Reffuveille, F., and Bodnar, J. L. (2020). Thermographic imaging for early detection of biocolonization on buildings. Building Research and Information, 40,296-310.
  • (15) Gómez, J., and Tascón, A. (2019). Metodología y aplicación práctica para la inspección de edificios agroindustriales mediante drones. In F. J. García-Ramos and P. Martín-Ramos (Eds.), Proceedings of the 10th Iberian Agroengineering Congress (pp. 144-148). Huesca, Spain: Universidad de Zaragoza.
  • (16) Seo, J., Duque, L., and Wacker, J. (2018). Drone-enabled bridge inspection methodology and application. Automation in Construction, 94, 112-126.
  • (17) Entrop, A. G., and Vasenev, A. (2017). Infrared drones in the construction industry: designing a protocol for building thermography procedures. Energy Procedia, 132, 63-68.
  • (18) Ministerio de la Presidencia y para las Administraciones Territoriales. (2017). Real Decreto 1036/2017, de 15 de diciembre, por el que se regula la utilización civil de las aeronaves pilotadas por control remoto, y se modifican el Real Decreto 552/2014, de 27 de junio, por el que se desarrolla el Reglamento del aire y disposiciones operativas comunes para los servicios y procedimientos de navegación aérea y el Real Decreto 57/2002, de 18 de enero, por el que se aprueba el Reglamento de Circulación Aérea. Boletín Oficial del Estado, BOE 29th December 2017, 316. Retrieved from https://www.boe.es/buscar/doc.php?id=BOE-A-2017-15721.
  • (19) Denominación de Origen Calificada Rioja. Retrieved from https://www.riojawine.com/en/home-en/
  • (20) Barbaresi, A., De Maria, F., Torreggiani, D., Benni, S., and Tassinari, P. (2015). Performance assessment of thermal simulation approaches of wine storage buildings based on experimental calibration. Energy and Buildings, 103, 307- 316.
  • (21) Gómez, J., Tascón, A., and Ayuga, F. (2018). Systematic layout planning of wineries: the case of Rioja region (Spain). Journal of Agricultural Engineering, 49(1), 34-41.
  • (22) AENOR-CEN (1998). UNE-EN 13187 Thermal performance of buildings - Qualitative detection of thermal irregularities in building envelopes - Infrared method (ISO 6781:1983 modified). Asociación Española de Normalización (AENOR).
  • (23) Garrido, I., Lagüela, S., Arias, P., and Balado, J. (2018). Thermal-based analysis for the automatic detection and characterization of thermal bridges in buildings. Energy and Buildings, 158, 1358-1367.
  • (24) Kim, C., Choi, J.-S., Jang, H., and Kim, E.-J. (2021). Automatic detection of linear thermal bridges from infrared thermal images using neural network. Applied Sciences, 11(3), 931.
  • (25) Ficapal, A., and Mutis, I. (2019). Framework for the detection, diagnosis, and evaluation of thermal bridges using infrared thermography and unmanned aerial vehicles. Buildings, 9(8), 179.
  • (26) Asdrubali, F., Baldinelli, G., and Bianchi, F. (2012). A quantitative methodology to evaluate thermal bridges in buildings. Applied Energy, 97, 365-373.
  • (27) Tejedor, B., Casals, M., Gangolells, M., and Roca, X. (2017). Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades. Energy and Buildings, 151, 187-197.
  • (28) Garrido, I., Lagüela, S., Otero, R., and Arias, P. (2020). Thermographic methodologies used in infrastructure inspection: A review—Post-processing procedures. Applied Energy, 266, 114857.
  • (29) Taylor, T., Counsell, J., and Gill, S. (2014). Combining thermography and computer simulation to identify and assess insulation defects in the construction of building façades. Energy and Buildings, 76, 130-142.
  • (30) Brinks, P., Kornadt, O., and Oly, R. (2015). Air infiltration assessment for industrial buildings. Energy and Buildings, 86, 663-676.
  • (31) Liu, X., Lin, L., Liu, X., Zhang, T., Rong, X., Yang, L, and Xiong, D. (2018). Evaluation of air infiltration in a hub airport terminal: On-site measurement and numerical simulation. Building and Environment, 143, 163-177.
  • (32) Quinn Brewster, M. (1992). Thermal Radiative Transfer and Properties. New York, USA: Wiley.
  • (33) Ellenberg, A., Kontsos, A., Bartoli, I., and Prandhan, A. (2014). Masonry crack detection application of an unmanned aerial vehicle. In Computing in Civil and Building Engineering. In R. Issa Issa and I. Flood (Eds.), Proceedings of the 2014 International Conference on Computing in Civil and Building Engineering (pp. 1788-1795). Reston, VA, USA: American Society of Civil Engineers.
  • (34) Zulgafli, M. N., and Tahar, K. N. (2017). Three dimensional curve hall reconstruction using semi-automatic UAV. ARPN Journal of Engineering and Applied Sciences, 12(10), 3228-3232. Retrieved from http://www.arpnjournals.org/jeas/ research_papers/rp_2017/jeas_0517_6039.pdf.
  • (35) Roca, D., Lagüela, S., Díaz-Vilariño, L., Armesto, J., and Arias, P. (2013). Low-cost aerial unit for outdoor inspection of building façades. Automation in Construction, 36, 128-135.
  • (36) Horla, D., and Cieślak, J. (2020). On obtaining energy-optimal trajectories for landing of UAVs. Energies, 13(8), 2062.
  • (37) Gupta, R., Barnfield, L., and Gregg, M. (2018). Exploring innovative community and household energy feedback approaches. Building Research and Information, 46(3), 284-299.
  • (38) Vavilov, V. P. (2010). How accurate is the IR thermographic evaluation of heat losses from buildings? Quantitative InfraRed Thermography Journal, 7(2), 255-258.
  • (39) Fox, M., Coley, D., Goodhew, S., and de Wilde, P. (2014). Thermography methodologies for detecting energy related building defects. Renewable and Sustainable Energy Reviews, 40, 296-310.