Impactos urbanos de la pandemia: el fenómeno de la dispersión urbana y sus consecuencias. El caso de Madrid

  1. Raquel Langarita 1
  2. Fernando Rubiera-Morollón 2
  1. 1 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  2. 2 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Revista:
Información Comercial Española, ICE: Revista de economía

ISSN: 0019-977X 2340-8790

Año de publicación: 2021

Título del ejemplar: Metrópolis, el futuro es ya presente

Número: 920

Páginas: 111-132

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.32796/ICE.2021.920.7204 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Información Comercial Española, ICE: Revista de economía

Resumen

El modelo residencial disperso, consistente en un dominio de viviendas unifamiliares con baja densidad de construcción y población, se está extendiendo en Europa y en España. La crisis sanitaria de la COVID-19 previsiblemente acelerará esta dinámica hacia la dispersión urbana. En este contexto, en este artículo utilizamos el modelo input-output para evaluar el impacto sectorial y sobre las emisiones de CO2 de un incremento de la dispersión en el área metropolitana de Madrid. Nuestros resultados muestran la relevancia de la forma urbana en la eficiencia energética.

Referencias bibliográficas

  • Akademie für Raumforschung und Landesplaning (1970). Handwürterbuch der Raumforschung und Raumornung, Band III. Gebrüder Järnecke Verlag, Hannover.
  • Bunnell, T., Drummond, L. B. W., & Ho, K. C. (2002). Critical reflections on cities in southern Asia. Brill Academic Press.
  • Burchfield, M., Overman, H. G., Puga, D., & Turner, M. A. (2006). Causes of Sprawl: A portrait from space. The Quarterly Journal of Economics, 121(2), 587-633.
  • Cartone, A., Díaz-Dapena, A., Langarita, R., & Rubiera-Morollón, F. (2021). Where the city lights shine? Measuring the effect of sprawl on electricity consumption in Spain. Land use policy, 105, 105425.
  • Comisión Europea (2006). Environmental Aspects of Urban Spread in Europe. Brussels, Joint Research Centre.
  • Couch, C., Petschel-Held, G., & Leontidou, L. (2007). Urban Sprawl in Europe: Landscapes, Land-Use Change & Policy. Blackwell Publishing.
  • Díaz, A., Fernández, E., Rubiera, F., & Viñuela, A. (2019). Literature Review on Disaggregation Methodologies. Deliverable 2.2 IMAJINE WP2 Analysis of Territorial Inequalities in Europe. http://imajine-project.eu/
  • Duarte, R., Langarita, R., & Sánchez-Chóliz, J. (2017). The electricity industry in Spain: A structural analysis using a disaggregated input-output model. Energy, 141, 2640-2651.
  • Ermer, K., Muhrmann, R., & Sukopp, H. (1994). Stadt und Umwelt. Ecological Indicators, 10, 397-406.
  • Estiri, H. (2014). Building and household X-factors and energy consumption at the residential sector: A structural equation analysis of the effects of household and building characteristics on the annual energy consumption of US residential buildings. Energy Economics, 43, 178-184.
  • Ewing, R., Pendall, R., & Chen, D. (2002). Measuring Sprawl and its impact. Smart Growth America, Transportation Research Board of the National Academies.
  • Galster, G., Hanson, R., Ratcliffe, M. R., Wolman, H., Coleman, S., & Freihage, J. (2001). Wrestling sprawl to the ground: Defining and measuring an elusive concept. Housing Policy Debate, 12(4), 681-717.
  • Gilbert, A. (1996). The Mega-City in Latin America. United Nations University Press, Tokyo.
  • Glaeser, E. L. (2011). El triunfo de las ciudades: cómo nuestra mejor creación nos hace más ricos, más inteligentes, más ecológicos, más sanos y más felices. Taurus.
  • Heinonen, J., & Junnila, S. (2014). Residential energy consumption patterns and the overall housing energy requirements of urban and rural households in Finland. Energy and Buildings, 76, 295-303.
  • Huang, W. H. (2015). The determinants of household electricity consumption in Taiwan: Evidence from quantile regression. Energy, 87, 120-133.
  • INE, Instituto Nacional de Estadística (2018). Cuentas de emisiones a la atmósfera por ramas de actividad (CNAE 2009) y Hogares como consumidores finales, sustancias contaminantes y periodo. https://www.ine.es/jaxi/Datos.htm?path=/t26/p084/base_2010/serie/l0/&file=01001.px
  • Jaeger, A. G. J., Bertiller, R., Schwick, C., Cavens, D., & Kienast, F. (2010). Urban permeation of landscapes and sprawl per capita: New measures of urban sprawl. Ecological Indicators, 10(2), 427-441.
  • Landscape Gesellschaft für Geo-Kommunikation (2000). Lexikon der Geowissenchaften, Band V. Specktrum Akademischer Verlag, Heidelber, Berlin.
  • Lenzen, M., Murray, S. A., Korte, B., & Dey, C. J. (2003). Environmental impact assessment including indirect effects—a case study using input–output analysis. Environmental Impact Assessment Review, 23(3), 263-282.
  • Leontief, W. (1941). The structure of American economy 1919-1929: An empirical application of equilibrium analysis. Harvard University Press.
  • Morán, A. J., Profaizer, P., Zapater, M. H., Valdavida, M. A., & Bribián, I. Z. (2016). Information and Communications Technologies (ICTs) for energy efficiency in buildings: Review and analysis of results from EU pilot projects. Energy and Buildings, 127, 128-137.
  • Motuzienė, V., Rogoža, A., Lapinskienė, V., & Vilutienė, T. (2016). Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: A case study. Journal of Cleaner Production, 112, 532-541.
  • Muñoz, F. (2003). Lock living: Urban sprawl in Mediterranean cities. Cities, 20(6), 381-385.
  • Polèse, M., & Champain, C. (2003). La evolución de los centros urbanos: la experiencia de América del Norte. World Bank, Washington.
  • Ramos Carvajal, C., García-Muñiz, A. S., & Moreno Cuartas, B. (2019). Assessing Socioeconomic Impacts of Integrating Distributed Energy Resources in Electricity Markets through Input-Output Models. Energies, 12(23), 4486.
  • Ramos Carvajal, C., García-Muñiz, A. S., Moreno Cuartas, B., & Díaz González, D. J. (2019). Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain. Energy, 167, 13-25.
  • Romero, J. (2010). Construcción residencial y gobierno del territorio en España. De la burbuja especulativa a la recesión. Causas y consecuencias. Cuadernos Geográficos, 47, 17-46.
  • Rubiera Morollón, F., González Marroquin, V. M., & Pérez Rivero, J. L. (2016). Urban sprawl in Spain: Differences among cities and causes. European Planning Studies, 24(1), 207-226.
  • Rubiera, F., González, V. M., & Pérez, J. L. (2017). Urban sprawl in Madrid? An analysis of the urban growth of Madrid during the last quarter of the XX century. Letters in Spatial and Resources and Sciences, 10(2), 205-214.
  • Sierra Club (1999). The dark side of the American dream: the costs and consequences of urban sprawl. Berkeley, San Francisco.
  • USHUD, U. S. Department of Housing and Urban Development (1999). The state of the cities 1999; Third annual report. Washington, D.C.
  • Wiedenhofer, D., Lenzen, M., & Steinberger, J. K. (2013). Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy, 63, 696-707.
  • Wiedmann, T., Lenzen, M., Turner, K., & Barrett, J. (2007). Examining the global environmental impact of regional consumption activities - Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade. Ecological Economics, 61(1), 15-26.
  • Wiesmann, D., Lima-Azevedo, I., Ferrão, P., & Fernández, J. E. (2011). Residential electricity consumption in Portugal: Findings from top-down and bottom-up models. Energy Policy, 39(5), 2772-2779.
  • Wilson, B., & Chakraborty, A. (2013). The Environmental Impacts of Sprawl: Emergent Themes from the Past Decade of Planning Research. Sustainability, 5(8), 3302-3327.
  • Zhao, P., & Zhang, M. (2018). The impact of urbanization on energy consumption: A 30-year review in China. Urban climate, 24, 940-953.