Benchmark de control de la orientación de un multirrotor en una estructura de rotación con tres grados de libertad
- Rico-Azagra, J. 1
- Gil-Martínez, M. 1
- Rico, R. 1
- Nájera, S. 1
- Elvira Izurrategui, Carlos
-
1
Universidad de La Rioja
info
ISSN: 1697-7920
Year of publication: 2021
Volume: 18
Issue: 3
Pages: 265-276
Type: Article
beta Ver similares en nube de resultadosMore publications in: Revista iberoamericana de automática e informática industrial ( RIAI )
Abstract
A fully equipped quadrotor is attached to a structure that allows free rotation without translation. Additionally, a set of MATLAB-Simulink® tools execute the flight controller programming and manage the real-time transmission of commands and flight states for the remote pilot. For this test bench a simulator is offered. It faithfully reproduces the behaviour of the real system in order to propose a benchmark on Control Engineering. This aims to control the quadrotor orientation described using the Euler angles. Thus the three control actions that attack the propulsion system must be generated taking into account the rotation speeds and angles that are estimated by the navigation system and the angle set points. During the performance tests, a modifiable supply voltage replaces the battery charge level and a control action emulates the height control, resulting in dierent operating points of the system as in a real flight. The simulator allows free setup of closed and open loop experiments for model identification tasks or analysing the control performance for dierent inputs and operating points. The final objective is to incorporate a control law that improves the behaviour given as a reference for a certain experiment. After a simulation, an evaluation function quantifies the dierences in tracking error and control action between the current control and the reference control for each degree of freedom. The main challenge is a narrow control bandwidth to govern a complex three-variable system.
Bibliographic References
- Bejarano, G., Alfaya, J., Rodriguez, D., Ortega, M., Morilla, F., 2019. Control de un sistema de refrigeración. Visitado 27.03.2021. URL: http://www.dia.uned.es/∼fmorilla/CIC2019/
- Bigazzi, L., Gherardini, S., Innocenti, G., Basso, M., 2021. Development of non expensive technologies for precise maneuvering of completely autonomous unmanned aerial vehicles. Sensors (Switzerland) 21 (2), 1-24. https://doi.org/10.3390/s21020391
- Blasco, X., García-Nieto, S., Reynoso-Meza, G., 2012. Control autónomo del seguimiento de trayectorias de un vehículo cuatrirrotor. Simulación y evaluación de propuestas. Revista Iberoamericana de Automática e Informática Industrial 9 (2), 194-199. https://doi.org/10.1016/j.riai.2012.01.001
- Bo, G., Xin, L., Hui, Z., Ling, W., 2016. Quadrotor helicopter attitude control using cascade PID. In: Proceedings of the 28th Chinese Control and Decision Conference, CCDC 2016. pp. 5158-5163. https://doi.org/10.1109/CCDC.2016.7531919
- Chen, Y., Zhang, G., Zhuang, Y., Hu, H., 2019. Autonomous flight control for multi-rotor UAVs flying at low altitude. IEEE Access 7, 42614-42625. https://doi.org/10.1109/ACCESS.2019.2908205
- Ebeid, E., Skriver, M., Terkildsen, K. H., Jensen, K., Schultz, U. P., 2018. A survey of open-source UAV flight controllers and flight simulators. Microprocessors and Microsystems 61, 11-20. https://doi.org/10.1016/j.micpro.2018.05.002
- García-Sanz, M., Elso, J., 2007. Resultados del benchmark de diseño de controladores para el cabeceo de un helicóptero. Revista Iberoamericana de Automática e Informática Industrial 4 (4), 117-120. https://doi.org/10.1016/S1697-7912(07)70251-0
- Gil-Martínez, M., Rico-Azagra, J., 2015. Multi-rotor robust trajectory tracking. In: 2015 23rd Mediterranean Conference on Control and Automation, MED 2015 - Conference Proceedings. pp. 865-870. https://doi.org/10.1109/MED.2015.7158854
- González-Vargas, A., Serna-Ramírez, J., Fory-Aguirre, C., Ojeda-Misses, A., Cardona-Ordoñez, J., Tombé-Andrade, J., Soria-López, A., 2019. A low-cost, free-software platform with hard real-time performance for control engineering education. Computer Applications in Engineering Education 27 (2), 406-418. https://doi.org/10.1002/cae.22084
- Hancer, M., Bitirgen, R., Bayezit, I., 2018. Designing 3-DOF hardware-inthe-loop test platform controlling multirotor vehicles. IFAC-PapersOnLine 51 (4), 119-124. https://doi.org/10.1016/j.ifacol.2018.06.058
- Kangunde, V., Jamisola, R.S., J., Theophilus, E., 2021. A review on drones controlled in real-time. International Journal of Dynamics and Control.
- https://doi.org/10.1007/s40435-020-00737-5
- Khan, S., Jaffery, M. H., Hanif, A., Asif, M. R., 2017. Teaching tool for a control systems laboratory using a quadrotor as a plant in MATLAB. IEEE Transactions on Education 60 (4), 249-256. https://doi.org/10.1109/TE.2017.2653762
- Lim, H., Park, J., Lee, D., Kim, H., 2012. Build your own quadrotor: Opensource projects on unmanned aerial vehicles. IEEE Robotics and Automation Magazine 19 (3), 33-45. https://doi.org/10.1109/MRA.2012.2205629
- Lotufo, M., Colangelo, L., Perez-Montenegro, C., Canuto, E., Novara, C., 2019. UAV quadrotor attitude control: An ADRC-EMC combined approach. Control Engineering Practice 84, 13-22. https://doi.org/10.1016/j.conengprac.2018.11.002
- Madridano, A., Campos, S., Al-Kaff, A., García, F., Martín, D., Escalera, A., 2020. Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial 17 (3), 254-263. https://doi.org/10.4995/riai.2020.11806
- Mercader, P., Cánovas, C. D., Baños, A., 2019. Control PID multivariable de una caldera de vapor. Revista Iberoamericana de Automática e Informática Industrial 16 (1), 15-25. https://doi.org/10.4995/riai.2018.9034
- Morilla, F., Rodríguez, C., 2017. Control de una caldera de vapor. Visitado 27.03.2021. URL: http://www.dia.uned.es/∼fmorilla/CIC2017/
- Nájera, S., Rico-Azagra, J., Elvira, C., Gil-Martínez, M., 2019. Plataforma giroscópica realizada mediante impresión 3D para el control de actitud y orientación de UAVs multi-rotor. In: Actas de las XL Jornadas de Automática, Comité Español de Automática de la IFAC. pp. 317-323. https://doi.org/10.17979/spudc.9788497497169.317
- Nascimento, T. P., Saska, M., 2019. Position and attitude control of multi-rotor aerial vehicles: A survey. Annual Reviews in Control 48, 129-146. https://doi.org/10.1016/j.arcontrol.2019.08.004
- Rico, R., Maisterra, P., Gil-Martínez, M., Rico-Azagra, J., S., N., 2015. Identificación experimental de los parámetros de un cuatrirrotor. In: Actas de las XXXVI Jornadas de Automática, Comité Español de Automática de la 'IFAC. pp. 973-982.
- Rico-Azagra, J., Gil-Martínez, M., Rico, R., Maisterra, P., 2016a. Plataforma didáctica de bajo coste para el control de actitud y orientación de UAVs multi-rotor. In: Actas de las XXXVII Jornadas de Automática, Comité Español de Automática de la IFAC. pp. 989-997.
- Rico-Azagra, J., Gil-Martínez, M., Rico-Azagra, R., Maisterra, P., 2016b. Low-cost attitude estimation for a ground vehicle. Advances in Intelligent Systems and Computing 417, 121-132. https://doi.org/10.1007/978-3-319-27146-0
- Rico-Azagra, J., Rico, R., Maisterra, P., Gil-Martínez, M., 2015. Comparación de algoritmos de estimación de actitud. In: Actas de las XXXVI Jornadas de Automática, Comité Español de Automática de la IFAC. pp. 911-920.
- Romero, J. A., Sanchis, R., 2011. Benchmark para la evaluación de algoritmos de auto-ajuste de controladores PID. Revista Iberoamericana de Automática e Informática Industrial 8 (1), 112-117. https://doi.org/10.4995/RIAI.2011.01.13
- Rubí, B., Perez, R., Morcego, B., 2020. A survey of path following control strategies for UAVs focused on quadrotors. Journal of Intelligent and Robotic Systems: Theory and Applications 98 (2), 241-265. https://doi.org/10.1007/s10846-019-01085-z
- Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., Guizani, M., 2019. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 7, 48572-48634. https://doi.org/10.1109/ACCESS.2019.2909530
- Shraim, H., Awada, A., Youness, R., 2018. A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerospace and Electronic Systems Magazine 33 (7), 14-33. https://doi.org/10.1109/MAES.2018.160246
- Shuster, M. D., 1993. Survey of attitude representations. Journal of the Astronautical Sciences 41 (4), 439-517.
- Sanchez-Fontes, E., Vilchis, J. A., Vilchis-González, A., Saldivar, B., Jacinto- 'Villegas, J., Martínez-Mendez, R., 2020. Nuevo vehículo aéreo autónomo estable por construcción: configuración y modelo dinámico. Revista Ibero-americana de Automática e Informática industrial 17 (3), 264-275. https://doi.org/10.4995/riai.2020.11603
- SolidWorks, 2018. Versión 2018. Dassault Systèmes S.A., Vélizy-Villacoublay, Francia.
- Wang, P., Man, Z., Cao, Z., Zheng, J., Zhao, Y., 2016. Dynamics modelling and linear control of quadcopter. In: International Conference on Advanced Mechatronic Systems, ICAMechS. Vol. 0. pp. 498-503. https://doi.org/10.1109/ICAMechS.2016.7813499
- Zhang, X., Li, X., Wang, K., Lu, Y., 2014. A survey of modelling and identification of quadrotor robot. Abstract and Applied Analysis 2014, Article ID 320526, 16 pages. https://doi.org/10.1155/2014/320526