Multiscale geometric 3D recording of palaeontological heritage in La Rioja, Spainregional context, sites, tracks and individual fossils

  1. Angelica Torices 1
  2. José M. Valle Melón 2
  3. Garbiñe Elorriaga Aguirre 2
  4. Pablo Navarro Lorbés 1
  5. Álvaro Rodríguez Miranda 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2020

Título del ejemplar: Dinosaurs and other Biota: from Bones to Environments

Volumen: 46

Número: 4

Páginas: 465-474

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1007/S41513-020-00132-1 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Repositorio institucional: lockAcceso abierto Editor

Objetivos de desarrollo sostenible

Resumen

La región de La Rioja (España) es rica en yacimientos paleontológicos, especialmente aquellos relacionados con huellas fósiles de dinosaurios, de los cuales se han descrito más de 150 yacimientos con más de 10,000 huellas. La catalogación y el estudio sistemático de este patrimonio requieren su ubicación correcta en el espacio y la provisión de una representación geométrica adecuada tanto de la distribución de restos en los yacimientos como de la forma tridimensional de los diferentes elementos fósiles. En este trabajo, se presentan las diversas técnicas de documentación geométrica utilizadas para este fin (GNSS, fotogrametría y escáner de luz estructurada), así como la descripción de los principales productos que se generan y su utilidad para el estudio, la gestión, las actividades de divulgación y la preservación. De patrimonio paleontológico en esta región. Estos productos serán clave para el desarrollo de proyectos de investigación paleontológica y el desarrollo de herramientas educativas y de divulgación.

Información de financiación

Financiadores

  • Consejeria de Eduacion y Cultura, Gobierno de La Rioja
  • Instituto de Estudios Riojanos

Referencias bibliográficas

  • Beuther, A. (1966). Geologische Untersuchungen in Wealden und Utrillas-Schichten im Westteil der Sierra de los Cameros (Nordwestliche Iberische Ketten), Der Jura und Wealden in Nordost- Spanien (pp. 103–121). Hannover: Beihefte zum Geologischen Jahrbuch.
  • Cayla, N. (2014). An overview of new technologies applied to the management of geoheritage. Geoheritage, 6, 91–102. https ://doi. org/10.1007/s1237 1-014-0113-0.
  • Cayla, N., Hobléa, F., & Reynard, E. (2014). New digital technologies applied to the management of geoheritage. Geoheritage, 6(2), 89–90.
  • Citton, P., Romano, M., Carluccio, R., D’Ajello Caracciolo, F., Nicolosi, I., Nicosia, U., et al. (2017). The first dinosaur tracksite from Abruzzi (Monte Cagno, Central Apennines, Italy). Cretaceous Research, 73, 47–59. https ://doi.org/10.1016/j.cretr es.2017.01.002.
  • Clauss, M., Nurutdinova, I., Meloro, C., Gunga, H. C., Jiang, D., Koller, J., et al. (2017). Reconstruction of body cavity volume in terrestrial tetrapods. Journal of Anatomy, 302, 325–336. https :// doi.org/10.1111/joa.12557 .
  • Cunningham, J. A., Rahman, I. A., Lautenschlager, S., Rayfield, E. J., & Donoghue, P. C. (2014). A virtual world of paleontology. Trends in ecology & evolution, 29(6), 347–357.
  • Falkingham, P. L. (2012). Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontologia Electronica. https ://doi.org/10.26879 /264.
  • Falkingham, P. L., Bates, K. T., Avanzini, M., Bennett, M., Bordi, E. M., Breithaupt, B. H., et al. (2018). A standard protocol for documenting modern and fossil ichnological data. Palaeontology, 61(4), 469–480. https ://doi.org/10.1111/pala.12373 .
  • Fernández-Lozano, J., & Gutiérrez-Alonso, G. (2017). The Alejico carboniferous forest: a 3D-terrestrial and UAV-assisted photogrammetric model for geologic heritage. Geoheritage, 9, 163–173. https ://doi.org/10.1007/s1237 1-016-0193-0.
  • Ferraby, R., & Powlesland, D. (2019). Heritage and landscape change: recording, archiving and engaging with photogrammetry on the Jurassic Coast World Heritage Site. Proceedings of the Geologists’ Association, 130, 483–492. https ://doi. org/10.1016/j.pgeol a.2019.02.007.
  • García Ortiz, E., Díaz-Martínez, I. D., Hernández, A. T., Ferré, M., Lorbés, P. N., & Palacios, R. S. J. (2018). Más allá de los dinosaurios: nuevas perspectivas para el patrimonio paleontológico de La Rioja. PH: Boletín del Instituto Andaluz del Patrimonio Histórico, 26(94), 321–323.
  • García-Ortiz, E., & Pérez-Lorente, F. (2014). Palaeoecological inferences about dinosaur gregarious behaviour based on the study of tracksites from La Rioja area in the Cameros Basin (Lower Cretaceous, Spain). Journal of Iberian Geology, 40(1), 113–127. https ://doi.org/10.5209/rev_JIGE.2014.v40.n1.44091 .
  • Herraiz, J. L., Villena, J. A., Vilaplana-Climent, A., Conejero, N., Cocera, H., Botella, H., et al. (2019). The palaeontological virtual collection of the University of Valencia’s Natural History Museum: a new tool for palaeontological heritage outreach. [La colección virtual de paleontología del Museo de Historia Natural de la Universitat de València: una nueva herramienta para la difusión del patrimonio paleontológico]. Spanish Journal of Palaeontology, 34(1), 139–144.
  • Lautenschlager, S. (2017). From bone to pixel—fossil restoration and reconstruction with digital techniques. Geology Today, 33(4), 155–159.
  • Mallison, H., (2011). Digitizing methods for paleontology: applications, benefits and limitations. In: Computational Paleontology, chapter 2. Berlin: Springer-Verlag. https ://doi.org/10.1007/978-3-642-16271 -8_2.
  • Moratalla, J. J., & Hernán, J. (2010). Probable palaeogeographic influences of the Lower Cretaceous Iberian rifting phase in the Eastern Cameros Basin (Spain) on dinosaur trackway orientations. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1–2), 116–130.
  • Niven, L., Steele, T. E., Finke, H., Gernat, T., & Hublin, J. J. (2009). Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection. Journal of Archaeological Research, 36, 2018–2023. https ://doi.org/10.1016/j. jas.2009.05.021.
  • Pérez-Lorente, F. (2015). Dinosaur footprints and trackways of La Rioja (p. 376). Bloomington: Indiana University Press.
  • Petti, F. M., Petruzzelli, M., Conti, J., Spalluto, L., Wagensommer, A., Lamendola, M., et al. (2018). The use of aerial and close-range photogrammetry in the study of dinosaur tracksites: Lower Cretaceous (upper Aptian/lower Albian) Molfetta ichnosite (Apulia, southern Italy). Palaeontologia Electronica, 21(3), 1–18. https ://doi.org/10.26879 /845pa laeo-elect ronic a.org/conte nt/2018/2317-uavs-and-dinos aur-track sites .
  • Remondino, F., Rizzi, A., Girardi, S., Petti, F. M., & Avanzini, M. (2010). 3D Ichnology—recovering digital 3D models of dinosaur footprints. The Photogrammetric Record, 25(131), 266–282.
  • Rodríguez Miranda, Á., Valle Melón, J. M., Torices, A., Lostado, R., Navarro, P., Elorriaga Agirre, G., et al. (2019). 3D digitization of complex exhition ítems (mounted skeletons of dinosaurs) and generation of virtual replicas for biomechanical studies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https ://doi.org/10.5194/isprs -archi ves-XLII-2-W15-1015-2019.
  • Romilio, A., Hacker, J. M., Zlot, R., Poropat, G., Bosse, M., & Salisbury, S. W. (2017). A multidisciplinary approach to digital mapping of dinosaurian tracksites in the Lower Cretaceous (Valanginian– Barremian) Broome Sandstone of the Dampier Peninsula, Western Australia. PeerJ, 5, e3013. https ://doi.org/10.7717/peerj .3013.
  • Sutton, M. D., Rahman, I. A., & Garwood, R. (2016). Virtual paleontology– an overview. Paleontological Society Papers, 22.
  • Tischer, G. (1966). Über die Wealden-Ablagerung und die Tektonik der östlichen Sierra de los Cameros in den nordwestlichen Iberischen Ketten (Spanien), Der Jura und Wealden in Nordost Spanien (pp. 123–164). Hannover: Beihefte zum Geologischen Jahrbuch.
  • Valle Melón, J. M., Rodríguez Miranda, Á., Pérez-Lorente, F., & Torices, A. (2019). The use of new web technologies for the analysis, preservation, and outreach of paleontological information and its application to La Rioja (Spain) paleontological heritage. Palaeontologia Electronica, 22(1), 1–10.
  • Vidal, D., & Díez Díaz, V. (2017). Reconstruction hypothetical sauropod tails by means of 3D digitization: Lirainosaurus astibiae as case study. Journal of Iberian Geology, 43, 293–305. https ://doi. org/10.1007/s4151 3-017-0022-6.
  • Wiedemann, A., Suthau, T., & Albertz, J. (1999). Photogrammetric survey of dinosaur skeletons. Mitteilungen aus dem Zoologischen Museum in Berlin Geowiss. Reihe, 2, 113–119.
  • Xing, L., Lockley, M. G., Romilio, A., Klein, H., Zhang, J., Chen, H., et al. (2018). Diverse sauropod-theropod-dominated track assemblage from the Lower Cretaceous Dasheng Group of Eastern China: testing the use of drones in footprint documentation. Cretaceous Research, 84, 588–599. https ://doi.org/10.1016/j.cretr es.2017.12.012.