Estimación automatizada del peso y calibre de aceitunas mediante análisis de imagen

  1. Juan M. Ponce 1
  2. Arturo Aquino 1
  3. Francisca Segura 1
  4. Borja Millán 1
  5. J. M. Andújar 1
  1. 1 Universidad de Huelva
    info

    Universidad de Huelva

    Huelva, España

    ROR https://ror.org/03a1kt624

Livre:
XXXIX Jornadas de Automática: actas. Badajoz, 5-7 de septiembre de 2018
  1. Inés Tejado Balsera (coord.)
  2. Emiliano Pérez Hernández (coord.)
  3. Antonio José Calderón Godoy (coord.)
  4. Isaías González Pérez (coord.)
  5. Pilar Merchán García (coord.)
  6. Jesús Lozano Rogado (coord.)
  7. Santiago Salamanca Miño (coord.)
  8. Blas M. Vinagre Jara (coord.)

Éditorial: Universidad de Extremadura

ISBN: 978-84-9749-756-5 978-84-09-04460-3

Année de publication: 2018

Pages: 958-966

Congreso: Jornadas de Automática (39. 2018. Badajoz)

Type: Communication dans un congrès

beta Ver similares en nube de resultados
DOI: 10.17979/SPUDC.9788497497565.0958 DIALNET GOOGLE SCHOLAR lock_openRUC editor

Objectifs de Développement Durable

Résumé

The sizing and sorting of agricultural commodities is a high relevance activity in food industry. This study, focused on the olive farming sector, presents a solution based on image analysis which allows the automatic and non-invasive estimation of the weight and size (major and minor axis) of a set of olive fruits. Considering two different varieties of olive fruits (Arbequina and Picual), a segmentation algorithm, able to extract from images the needed information to compute the weight and size prediction models, was developed. The effectiveness of the proposed method was assessed by calculating the root-mean-square error (RMSE) produced by the models when applied to the corresponding external validation sets. The measured results show evidences of viability as a base to the development of a low-cost olive fruit grading system based on machine vision.