Versatile coordinative abilities of perhalophenyl-gold(I) fragments to Xantphos: Influence on the emissive properties

  1. López-de-Luzuriaga, J.M. 1
  2. Monge, M. 1
  3. Olmos, M.E. 1
  4. Rodríguez-Castillo, M. 1
  5. Soldevilla, I. 1
  1. 1 Universidad de La Rioja

    Universidad de La Rioja

    Logroño, España

Journal of Organometallic Chemistry

ISSN: 0022-328X

Year of publication: 2020

Volume: 913

Type: Article

Exportar: RIS
DOI: 10.1016/j.jorganchem.2020.121198 SCOPUS: 2-s2.0-85080103078
bar_chart Ver indicadores


Reaction of perhalophenylgold(I) complexes [AuR(tht)] (R = C6Cl2F3, C6Cl5; tht = tetrahydrothiophene) with different number of equivalents of Xantphos (4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene) leads to discrete complexes in which the metal atom displays very different coordination environments. Thus, the ionic complex [Au(Xantphos)2][Au(C6Cl2F3)2] (1) or the neutral [Au(C6Cl5)(Xantphos)] (2) one are obtained when a 1:1 (Au:Xantphos) stoichiometry is used. However, similar compounds [Au2R2(μ-Xantphos)] (R = C6Cl2F3 (3); C6Cl5 (4)) are synthesized when the amount of gold is increased to a 2:1 ratio. The use of diphosphine Xantphos, which can act as bridging, chelate or even as mono-dentate ligand, together with the use of different perhalophenyl groups bonded to the gold(I) centres, allows the synthesis of cationic tetracoordinate gold(I) fragments (1), mononuclear (2) or dinuclear (3–4) dicoordinated gold(I) complexes. This structural diversity in the coordination arrangements as well as the different aryl groups present in the molecules directly affect their photophysical properties, giving rise to different luminescent emission energies ranging from 470 to 580 nm, and also to a different origin for the electronic transitions related to them such as 3IL (3) to 3MLCT (4) and also a mixture of them 3MLCT/3IL (1 and 2). The experimental photophysical results obtained for these gold(I) complexes were supported by DFT and TD-DFT calculations. On the other hand, the behaviour of these complexes in solution is different, losing their emissive properties for all complexes or displaying the co-existence of different structural arrangements in the case of complexes 1 and 2, as observed through variable-temperature 31P{1H} NMR experiments.

Bibliographic References

  • Ma, Y., Zhou, X., Shen, J., Chao, H.-Y., Che, C.-M., Triplet luminescent dinuclear-gold(I) complex-based light-emitting diodes with low turn-on voltage. Appl. Phys. Lett. 74 (1999), 1361–1363.
  • Mohr, F., Pacheco, E.A., Tiekink, E.R.T., Whitehouse, M.W., (eds.) Gold Chemistry: Applications and Future Directions in the Life Sciences; Gold Compounds and Their Applications in Medicine, 2009, Wiley-VCH, Germany.
  • Dorel, R., Echavarren, A.M., Gold(I)-catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115 (2015), 9028–9072.
  • Pintado-Alba, A., de la Riva, H., Nieuwhuyzen, M., Bautista, D., Raithby, P.R., Sparkes, H.A., Teat, S.J., López-de-Luzuriaga, J.M., Lagunas, M.C., Effects of diphosphine structure on aurophilicity and lumninescence in Au(I) complexes. Dalton Trans., 2004, 3459–3467.
  • Jobbágy, C., Molnár, M., Baranyai, P., Hamza, A., Pálinkás, G., Deák, A., A stimuli-responsive double-stranded digold(I) helicate. Cryst. Eng. Comm. 16 (2014), 3192–3202.
  • Partyka, D.V., Updegraff, J.B. III, Zeller, M., Hunter, A.D., Gray, T.G., Gold(I) halide complexes of bis(diphenylphosphine)diphenyl ether ligands: a balance of ligand strain and non-covalent interactions. Dalton Trans. 39 (2010), 5388–5397.
  • Glebko, N., Dau, T.M., Melnikov, A.S., Grachova, E.V., Solovyev, I.V., Belyaev, A., Karttunen, A.J., Koshevoy, I.O., Luminescence thermochromism of gold(I) phosphane-iodide complexes: a rule or an exception?. Chem. Eur J. 24 (2018), 3021–3029.
  • Deák, A., Megyes, T., Tárkányi, G., Király, P., Biczók, L., Pálinkás, G., Stang, P.J., Synthesis and solution- and solid-state characterization of gold(I) rings with short Au···Au interactions. Spontaneous resolution of a gold(I) complex. J. Am. Chem. Soc. 128 (2006), 12668–12670.
  • Tunyogi, T., Deák, A., [l-4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene]bis[(trifluoroacetato) gold(I)] and its dichloromethane 0.58-solvate. Acta. Cryst. C66 (2010), m133–m136.
  • Ito, H., Saito, T., Miyahara, T., Zhong, C., Sawamura, M., Gold(I) hydride intermediate in catalysis: dehydrogenative alcohol silylation catalysed by gold(I) complex. Organometallics 28 (2009), 4829–4840.
  • James, S.L., Lagunas, M.C., Horton, P.N., Hursthouse, M.B., Crystal Structure Report Archive., 2008, University of Southampton, 10.5258/ecrystals/601.
  • Partyka, D.V., Teets, T.S., Zeller, M., Updegraff, J.B. III, Hunter, A.D., Gray, T.G., Constrained digold(I) diaryls: synthesis, crystal structures, and photophysics. Chem. Eur. J. 18 (2012), 2100–2112.
  • Casado, A.L., Espinet, P., A novel reversible aryl exchange involving two organometallics: mechanism of the gold(I)-Catalyzed isomerization of trans-[PdR2L2] complexes (R =Aryl, L=SC4H8). Organometallics 17 (1998), 3677–3683.
  • Usón, R., Laguna, A., Vicente, J., García, J., Bergareche, B., Preparation of pentahalophenyl p-tolylisocyanide complexes of gold(I) and their reactions with amines, ammonia and alcohols. J. Org. Chem. 173 (1979), 349–355.
  • Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C., Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162 (1989), 165–169.
  • Becke, A.D., Density-functional thermochemistry. III. The role of exact Exchange. J. Chem. Phys. 98 (1993), 5648–5652.
  • Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 2010, 154104.
  • Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7 (2005), 3297–3305.
  • Andrae, D., Häussermann, U., Dolg, M., Stoll, H., Preuss, H., Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc. 77 (1990), 123–141.
  • Schäfer, A., Horn, H., Ahlrichs, R., Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97 (1992), 2571–2577.
  • Sheldrick, G.M., SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 71 (2015), 3–8.
  • Hillebrand, S., Bruckmann, J., Kriiger, C., Haenel, M.W., Bidentate phosphines of heteroarenes: 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthenel). Tetrahedron Lett. 36 (1995), 75–78.
  • Kranenburg, M., van der Burgt, Y.E.M., Kamer, P.C.J., van Leeuwen, P.W.N.M., Goubitz, K., Fraanje, J., New diphosphine ligands based on heterocyclic aromatics inducing very high regioselectivity in rhodium-catalyzed hydroformylation: effect of the bite angle. Organometallics 14 (1995), 3081–3089.
  • Jobbágy, C., Baranyai, P., Szabó, P., Holczbauer, T., Rácz, B., Li, L., Naumov, P., Deák, A., Unexpected formation of a fused double cycle trinuclear gold(I) complex supported by ortho-phenyl metallated aryl-diphosphine ligands and strong aurophilic interactions. Dalton Trans. 45 (2016), 12569–12757.
  • Sakamoto, Y., Moriuchi, T., Hirao, T., Dinuclear organogold(I) complexes bearing uracil moieties: chirality of Au(I)-Au(I) axis and self-assembly. Cryst. Eng. Comm. 17 (2015), 3460–3467.
  • Baranyai, P., Marsi, G., Hamza, A., Jobbágy, C., Deák, A., Structural characterization of dinuclear gold(I) diphosphine complexes with anion-triggered luminescence. Struct. Chem. 26 (2015), 1377–1387.
  • Serrano-Becerra, J.M., Maier, A.F.G., González-Gallardo, S., Moos, E., Kaub, C., Gaffga, M., Niedner-Schatteburg, G., Roesky, P.W., Breher, F., Paradies, J., Mono- vs. dinuclear gold-catalyzed intermolecular hydroamidation. Eur. J. Org Chem., 2014, 4515–4522.
  • Jobbágy, C., Moinar, M., Baranyai, P., Hamza, A., Palinkas, G., Deák, A., Mechanochemical synthesis of crystalline and amorphous digold(I) helicates exhibiting anion- and phase-switchable luminescence properties. Cryst. Eng. Comm. 16 (2014), 3192–3202.
  • Takahashi, K., Yamashita, M., Ichihara, T., Nakano, K., Nozaki, K., High-yielding tandem hydroformylation/hydrogenation of a terminal olefin to produce a linear alcohol using a Rh/Ru dual catalyst system. Angew. Chem. Int. Ed. 49 (2010), 4488–4490.