Inconditional and quasi-greedy bases in Lp with applications to Jacobi polynomials Fourier series
- Fernando Albiac 1
- José L. Ansorena 2
- Óscar Ciaurri 2
- Juan L. Varona 2
-
1
Universidad Pública de Navarra
info
-
2
Universidad de La Rioja
info
ISSN: 0213-2230
Année de publication: 2019
Volumen: 35
Número: 2
Pages: 561-574
Type: Article
beta Ver similares en nube de resultadosD'autres publications dans: Revista matemática iberoamericana
Résumé
We show that the decreasing rearrangement of the Fourier series with respect to the Jacobi polynomials for functions in Lp does not converge unless p=2. As a by-product of our work on quasi-greedy bases in Lp(μ), we show that no normalized unconditional basis in Lp, p≠2, can be semi-normalized in Lq for q≠p, thus extending a classical theorem of Kadets and Pełczyński from 1962.