Inconditional and quasi-greedy bases in Lp with applications to Jacobi polynomials Fourier series

  1. Fernando Albiac 1
  2. José L. Ansorena 2
  3. Óscar Ciaurri 2
  4. Juan L. Varona 2
  1. 1 Universidad Pública de Navarra
    info

    Universidad Pública de Navarra

    Pamplona, España

    ROR https://ror.org/02z0cah89

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revue:
Revista matemática iberoamericana

ISSN: 0213-2230

Année de publication: 2019

Volumen: 35

Número: 2

Pages: 561-574

Type: Article

beta Ver similares en nube de resultados

D'autres publications dans: Revista matemática iberoamericana

Dépôt institutionnel: lock_openAccès ouvert Editor lock_openAccès ouvert Postprint

Résumé

We show that the decreasing rearrangement of the Fourier series with respect to the Jacobi polynomials for functions in Lp does not converge unless p=2. As a by-product of our work on quasi-greedy bases in Lp(μ), we show that no normalized unconditional basis in Lp, p≠2, can be semi-normalized in Lq for q≠p, thus extending a classical theorem of Kadets and Pełczyński from 1962.