¿Cómo se forma el estado de flow entre los internautas compradores de moda? Un estudio comparativo de los sitios web de Zara y H&M

  1. Ruiz Vega, Agustín V. 1
  2. Riano Gil, Consuelo 1
  3. Aguado Gonzalez, Aurora 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
International Journal of Information Systems and Software Engineering for Big Companies: IJISEBC

ISSN: 2387-0184

Año de publicación: 2019

Volumen: 6

Número: 1

Páginas: 79-95

Tipo: Artículo

beta Ver similares en nube de resultados

Otras publicaciones en: International Journal of Information Systems and Software Engineering for Big Companies: IJISEBC

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

El estado de flujo o de flow es un estado mental que, en el contexto del comercio electrónico, genera placer al internauta comprador, provoca que se implique y disfrute con la tarea que está realizando, y pierda la noción del tiempo. Todo ello produce al consumidor una elevada gratificación emocional y una satisfacción con la visita y/o compra realizada en el sitio web.El presente artículo tiene como finalidad estudiar la importancia relativa y conjunta de cinco factores que la literatura ha detectado relevantes en el surgimiento de estado de flow: estética del sitio web, facilidad de uso del mismo, personalización de los contenidos, demostrabilidad y calidad de los contenidos. El contexto analizado ha sido la compra de ropa en dos sitios web monomarca: Zara y H&M. Los resultados obtenidos permiten concluir que los factores claves en el surgimiento de estado de flujo son la personalización de los contenidos y la facilidad de uso del sitio web. Sin embargo, las empresas analizadas llegan a alcanzar resultados similares con estrategias comerciales diferenciadas pues H&M obtiene niveles similares de flujo a partir de la estética de la web en lugar de la facilidad de uso de la misma, como es el caso de Zara.

Referencias bibliográficas

  • Agarwal, R.; Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS quarterly.
  • Ahn, T.; Ryu, S.; Han, I. (2005). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405-420.
  • Alcántara-Pilar, J. M.; Del Barrio-García, S. (2016). El papel moderador del diseño web y la cultura del país en la respuesta del consumidor online. Una aplicación a los destinos turísticos. European Research on Management and Business Economics, 22(2), 78-87.
  • Ali, F. (2016). Hotel website quality, perceived flow, customer satisfaction and purchase intention. Journal of Hospitality and Tourism Technology, 7(2), 213-228.
  • Belsley, D. A. (1991). Conditioning Diagnostics: Collinearity and Weak Data in Regression. John Wiley & Sons.
  • Carbon, C. C.; Leder, H. (2007). Design evaluation. From typical problems to state-of-the-art solutions. Thexis, 24(2), 33-37.
  • Carlson, J.; O’Cass, A. (2011). Creating commercially compelling website-service encounters: an examination of the effect of website-service interface performance components on flow experiences. Electronic Markets, 21(4), 237-253.
  • Chen, H.; Wigand, R. T.; Nilan, M. S. (1999). Optimal experience of web activities. Computers in human behavior, 15(5), 585-608.
  • Chen, Q.; Clifford, S. J.; Wells, W. D. (2002). Attitude toward the site II. New information. Journal of Advertising Research, 42(2), 33-45.
  • Cheung, C. M. K.; Lee, M. K. O. (2004). The asymmetric impact of website attribute performance on user satisfaction: an empirical study. E-Service Journal, 3(3), 33-45.
  • Csikszentmihalyi, M. (1975). Play and intrinsic rewards. Journal of humanistic psychology, 15(3), 41-63.
  • Csikszentmihalyi, M. (1990). Flow. The psychology of optimal experience. Harpers Perennial, New York.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly.
  • Deng, L.; Turner, D. E.; Gehling, R.; Prince, B. (2010). User experience, satisfaction, and continual usage intention of IT. European Journal of Information Systems, 19(1), 60-75.
  • Drengner, J.; Jahn, S.; Furchheim, P. (2018). Flow revisited: process conceptualization and a novel application to service contexts. Journal of Service Management, 29(4), 703-734.
  • Eroglu, S. A.; Machleit, K. A.; Davis, L. M. (2001). Atmospheric qualities of online retailing. A conceptual model and implications. Journal of Business Research, 54(2), 177-184.
  • Eroglu, S. A.; Machleit, K. A.: Davis, L. M. (2003). Empirical testing of a model of online store atmospherics and shopper responses. Psychology & Marketing, 20(2), 139-150.
  • Esteban-Millat, I.; Martínez-López, F. J.; Luna, D.; Rodríguez-Ardua, I. (2014). The concept of flow in online consumer behavior. In Handbook of strategic e-business management (pp, 371-402). Berlin, Heidelberg: Springer.
  • Ettis, S. A. (2017). Examining the relationships between online store atmospheric color, flow experience and consumer behavior. Journal of Retailing and Consumer Services, 37, 43-55.
  • Finneran, C. M.; Zhang, P. (2005). Flow in computer-mediated environments: promises and challenges. Communications of the Association for Information Systems, 15(1), 82-101.
  • Flavián, C.; Guinaliu, M.; Gurrea, R. (2006). The role played by perceived usability, satisfaction and consumer trust on website loyalty. Information & Management, 43(1), 1-14.
  • Fornell, C.; Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing research, 18(1), 39-50.
  • Gao, L.; Waechter, K. A.; Bai, X. (2015). Understanding consumers’ continuance intention towards mobile purchase: A theoretical framework and empirical study–A case of China. Computers in Human Behavior, 53, 249-262.
  • Guo, Z.; Xiao, L.; Van Toorn, C.; Lai, Y.; Seo, C. (2016). Promoting online learners’ continuance intention: An integrated flow framework. Information & Management, 53(2), 279-295.
  • Ha, S.; Stoel, L. (2012). Online apparel retailing: roles of e-shopping quality and experiential e-shopping motives. Journal of Service Management, 23(2), 197-215.
  • Ha, Y.; Im, H. (2011). The effect of perceptual fluency and enduring involvement on situational involvement in an online apparel shopping context. Journal of Fashion Marketing and Management. An International Journal, 15(3), 345-362.
  • Ha, Y.; Im, H. (2012). Role of web site design quality in satisfaction and word of mouth generation. Journal of Service Management, 23(1), 79-96.
  • Hagtvedt, H.; Patrick, V. M. (2008). The influence of visual art on the perception and evaluation of consumer products. Journal of Marketing Research, 45(3), 379-389.
  • Hagtvedt, H.; Patrick, V. M. (2014). Consumer response to ovestyling: Balancing aesthetics and functionality in product design. Psychology & Marketing, 31(7), 518-525.
  • Hair, J. F.; Anderson, R. E.; Tatham, R. L.; Black, W. C. (2007). Análisis multivariante. Pretince-Hall, 5ª Edición, Madrid.
  • Hausman, A.; Siekpe, J. (2009). The effect of web interface features on consumer online purchase intentions. Journal of Business Research, 62(1), 5-13.
  • Hekkert, P. (2006). Design aesthetics: principles of pleasure in design. Psychology Science, 48(2), 157-172.
  • Hoffman, D. L.; Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments. Conceptual foundations. The Journal of Marketing.
  • Hoffman, D. L.; Novak, T. P. (2009). Flow online. Lessons learned and future prospects. Journal of Interactive Marketing, 23(1), 23-34.
  • Hsu, C. L.; Chang, K. C.; Chen, M. C. (2012). The impact of website quality on customer satisfaction and purchase intention. Perceived playfulness and perceived flow as mediators. Information Systems and e-Business Management, 10(4), 549-570.
  • Huang, E. (2012). Online experiences and virtual goods purchase intention. Internet Research, 22(3), 252-274.
  • Huang, M. H. (2003). Designing website attributes to induce experiential encounters. Computers in Human Behavior, 19(4), 425-442.
  • Iglesias, V.; Ruiz, A. V. (1998). La utilidad de la prueba de Chow para la segmentación de mercados, una aplicación en el sector turístico. Investigación y Marketing.
  • Jain, R.; Aagia, J.; Bagdare, S. (2017). Customer experience: a review and research agenda. Journal of Service Theory and Practice, 27(3), 642-662.
  • Jayawardhena, C.; Tiu Wright, L. (2009). An empirical investigation into e-shopping excitement. Antecedents and effects. European Journal of Marketing, 43(9/10), 1171-1187.
  • Jones, Ch.; Kim, S. (2010). Influences of retail brand trust, off-line patronage, clothing involvevement and websity quality on online apparel shopping intention. International Journal of Consumer Studies, 34 (6), 627-637.
  • Kabadayi, S.; Gupta, R. (2011). Managing motives and design to influence web site revisits. Journal of Research in Interactive Marketing, 5(2), 153-169.
  • Keller, K. L. (1993). Conceptualizing, measuring, and managing customer-based brand equity. The Journal of Marketing.
  • Kim, E. Y.; Kim, Y. K. (2004). Predicting online purchase intentions for clothing products. European journal of Marketing, 38(7), 883-897.
  • Kim, J.; Fiore, A. M.; Lee, H. H. (2007). Influences of online store perception, shopping enjoyment, and shopping involvement on consumer patronage behaviour towards an online retailer. Journal of Retailing and Consumer Services, 14(2), 95-107.
  • Kim, S. (2011). Web-interactivity dimensions and shopping experiential value. Journal of Internet Business, 9, 1-25.
  • Kim, S.; Stoel, L. (2004). Apparel retailers: website quality, dimensions and satisfaction. Journal of Retailing and Consumer Services, 11, 109-117.
  • Kleinbaum, D. G.; Kupper, L. L.; Muller, K. E. (1998). Applied Regression Analysis and Other Multivariables Methods. PWS- Kent Publishing Company.
  • Korzaan, M. (2003). Going with the flow: Predicting online purchase intentions. Journal of Computer Information Systems, 43(4), 25-31.
  • Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223.
  • Ladhari, R. (2010). Developing e-service quality scales: A literature review. Journal of Retailing and Consumer Services, 17, 464-477.
  • Lee, J. E.; Hur, S.; Watkins, B. (2018). Visual communication of luxury fashion brands on social media: effects of visual complexity and brand familiarity. Journal of Brand Management, 25(5), 449-462.
  • Liu, C. C. (2017). A model for exploring players flow experience in online games. Information Technology & People, 30(1), 139-162.
  • Liu, H.; Chu, H.; Huang, Q.; Chen, X. (2016). Enhancing the flow experience of consumers in China through interpersonal interaction in social commerce. Computers in Human Behavior, 58, 306-314.
  • Luna, D.; Peracchio, L. A.; De Juan, M. D. (2002). Cross-cultural and cognitive aspects of web site navigation. Journal of the Academy of Marketing Science, 30(4), 397-410,
  • Manganari, E. E.; Siomkos, G. J.; Vrechopoulos, A. P. (2009). Store atmosphere in web retailing. European Journal of Marketing, 43(9/10), 1140-1153.
  • Mathwick, C.; Rigdon, E. (2004). Play, flow and the online search experience. Journal of Consumer Research, 31(2), 324-332.
  • Mathwick, C.; Malhotra, N.; Rigdon, E. (2001). Experiential value. conceptualization, measurement and application in the catalog and Internet shopping environment. Journal of Retailing, 77(1), 39-56.
  • Mazaheri, E.; Richard, M. O.; Laroche, M. (2012). The role of emotions in online consumer behavior: a comparison of search, experience, and credence services. Journal of Services Marketing, 26(7), 535-550.
  • Nambisan, P.; Watt, J. H. (2011). Managing customer experiences in online product communities. Journal of Business Research, 64(8), 889-895.
  • Novak, T. P.; Hoffman, D. L.; Yung, Y. (2000). Measuring the customer experience in online environments. A structural modeling approach. Marketing Science, 19(1), 22-42.
  • Nunnally, J.; Bernstein, I. (1994). Psychometric theory. McGraw-Hill, New York, 3ª edición.
  • Obadă, D. R. (2013). Flow theory and online marketing outcomes: a critical literature review. Procedia Economics and Finance, 6, 550-561.
  • O'Cass, A.; Carlson, J. (2010). Examining the effects of website-induced flow in professional sporting team websites. Internet Research, 20(2), 115-134.
  • ONTSI (Observatorio Nacional de las Telecomunicaciones y Sociedad de la Información) (2017). Estudio sobre Comercio Electrónico B2C 2016. Madrid.
  • Ozkara, B. Y.; Ozmen, M.; Kim, J. W. (2017). Examining the effect of flow experience on online purchase: A novel approach to the flow theory based on hedonic and utilitarian value. Journal of Retailing and Consumer Services, 37, 119-131.
  • Park, J.; Lennon, S. L.; Stoel, L. (2005). On-line product presentation: effects on mood, perceived risk, and purchase intention. Psychology & Marketing, 22(9), 695-719.
  • Rose, S.; Clark, M.; Samouel, P.; Hair, N. (2012). Online customer experience in e-retailing: an empirical model of antecedents and outcomes. Journal of Retailing, 88(2), 308-322.
  • Sánchez-Franco, M. J. (2005). El comportamiento del usuario en la web: un análisis del estado de flujo. Revista Española de Investigación de Marketing-ESIC.
  • Sánchez-Franco, M. J.; Rondán, F. J.; Villarejo, A. F. (2007). Un modelo empírico de adaptación y uso de la Web: utilidad, facilidad de uso y flujo percibidos. Cuadernos de Economía y Dirección de la Empresa, 30, 153-180.
  • Shobeiri, S.; Mazaheri, E.; Laroche, M. (2014). Improving customer website involvement through experiential marketing. The Service Industries Journal, 34(11), 885-900.
  • Sicilia, M.; Ruiz De Maya, S.; Munuera, J. L. (2005). Effects on interactivity in a web site: the moderating effect of need for cognition. Journal of Advertising, 34(3), 31-44.
  • Siekpe, J. S. (2005). An examination of the multidimensionality of flow construct in a computer-mediated environment. Journal of Electronic Commerce Research, 6(1), 31.
  • Skadberg, Y. X.; Kimmel, J. R. (2004). Visitors’ flow experience while browsing a Web site: its measurement, contributing factors and consequences. Computers in Human Behavior, 20(3), 403-422.
  • Webster, J.; Trevino, L. K.; Ryan, L. (1994). The dimensionality and correlates of flow in human-computer interactions. Computers in Human Behavior, 9(4), 411-426.
  • Wells, J. D.; Valacich, J. S.; Hess, T. J. (2011). What signal are you sending? How website quality influences perceptions of product and purchase intentions. MIS Quaterly, 35(2), 373-396.
  • Wu, J.; Kang, J. Y. M.; Damminga, C.; Kim, H..; Johnson, K. K. (2015). MC 2.0. testing an apparel co-design experience model. Journal of Fashion Marketing and Management, 19(1), 69-86.
  • Zanjani, S. H.; Milne, G. R.; Miller, E. G. (2016). Procrastinators’ online experience and purchase behavior. Journal of the Academy of Marketing Science, 44(5), 568-585.
  • Zhang, H.; Lu, Y.; Guta, S.; Zhao, L. (2014). What motivates customers to participate in social commerce? The impact of techological environments and virtual customer experiences. Information & Management, 52(4), 496-505.
  • Zhou, T.; Li, H.; Liu, Y. (2010). The effect of flow experience on mobile SNS users' loyalty. Industrial Management & Data Systems, 110(6), 930-946.