Stimuli-Responsive Solvatochromic Au(I)-Ag(I) Clusters: Reactivity and Photophysical Properties Induced by the Nature of the Solvent

  1. López-De-Luzuriaga, J.M. 1
  2. Monge, M. 1
  3. Olmos, M.E. 1
  4. Quintana, J. 1
  5. Rodríguez-Castillo, M. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

Journal:
Inorganic Chemistry

ISSN: 1520-510X

Year of publication: 2019

Volume: 58

Number: 2

Pages: 1501-1512

Type: Article

Exportar: RIS
DOI: 10.1021/acs.inorgchem.8b03022 PMID: 30592408 SCOPUS: 2-s2.0-85059619642
bar_chart Ver indicadores

Summary

Reaction of the heterometallic polymer [Au 2 Ag 2 (C 6 Cl 5 ) 4 (OEt 2 ) 2 ] n with 4 equiv of pyridazine leads to the new discrete complex [Au 2 Ag 2 (C 6 Cl 5 ) 4 (μ 2 -C 4 H 4 N 2 ) 2 (C 4 H 4 N 2 ) 2 ] (1). Complex 1 is solvoluminescent, leading to drastic structural changes, depending on the coordination ability of the chosen solvent. Thus, the reaction of complex 1 with acetonitrile leads to a new Au(I)-Ag(I) complex of stoichiometry [Au 2 Ag 2 (C 6 Cl 5 ) 4 (μ 2 -C 4 H 4 N 2 ) 2 (NCMe) 2 ] n ·2CH 3 CN(2), while if the reaction is carried out with a noncoordinating solvent such as dichloromethane, complex [Au 2 Ag 2 (C 6 Cl 5 ) 4 (C 4 H 4 N 2 ) 2 ] n ·CH 2 Cl 2 (3) is obtained. Furthermore, when complexes 1, 2, and 3 are exposed to tetrahydrofuran, different results are obtained. In the case of complex 1, the metallic core disposition remains and THF is incorporated as a crystallization solvent in [Au 2 Ag 2 (C 6 Cl 5 ) 4 (μ 2 -C 4 H 4 N 2 ) 2 (C 4 H 4 N 2 ) 2 ]·2THF (1·THF). On the other hand, reaction of complexes 2 or 3 with THF gives rise to a mixture of the corresponding polymeric complex [Au 2 Ag 2 (C 6 Cl 5 ) 4 (THF) 2 ] n , in which pyridazine ligands are displaced, together with a polymorph of complex 1·THF. All these complexes are luminescent in solid state displaying different emission energies depending on their structural disposition as well as on the presence of the metallophilic interactions. These subtle changes in the cluster structures, only based on the solvent used, lead to spectacular reversible changes in the emissive behavior of the complexes, allowing the tuning of the luminescent emissions in a wide range. DFT and TD-DFT calculations support the experimental photophysical studies.

Bibliographic References

  • Tang, Y.; Yang, H.-R.; Sun, H.-B.; Liu, S.-J.; Wang, J.-X.; Zhao, Q.; Liu, X.-M.; Xu, W.-J.; Li, S.-B.; Huang, W. Rational design of an "OFF-ON" phosphorescent Chemodosimeter based on an Iridium (III) complex and its application for Time-Resolved luminescent detection and bioimaging of cysteine and homocysteine. Chem.-Eur. J. 2013, 19, 1311-1319, 10.1002/chem.201203137
  • Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 2000, 205, 59-83, 10.1016/S0010-8545(00)00242-3
  • Schmaljohann, D. Thermo and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev. 2006, 58, 1655-1670, 10.1016/j.addr.2006.09.020
  • Zhu, Y.; Liu, H.; Li, F.; Ruan, Q.; Wang, H.; Fujiwara, M.; Wang, L.; Lu, G.-Q. Dipolar molecules as impellers achieving electric-field-stimulated release. J. Am. Chem. Soc. 2010, 132, 1450-1451, 10.1021/ja907560y
  • Convertine, A. J.; Diab, C.; Prieve, M.; Paschal, A.; Hoffman, A. S.; Johnson, P. H.; Stayton, P. S. pH-responsive polymer micelle carriers for siRNA drugs. Biomacromolecules 2010, 11, 2904-2911, 10.1021/bm100652w
  • Pyykkö, P. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97, 597-636, 10.1021/cr940396v
  • Pyykkö, P. Theoretical Chemistry of Gold. Angew. Chem., Int. Ed. 2004, 43, 4412-4456, 10.1002/anie.200300624
  • Pyykkö, P. Theoretical chemistry of gold II. Inorg. Chim. Acta 2005, 358, 4113-4130, 10.1016/j.ica.2005.06.028
  • Pyykkö, P. Theoretical chemistry of gold III. Chem. Soc. Rev. 2008, 37, 1967-1997, 10.1039/b708613j
  • Hermann, H. L.; Boche, G.; Schwerdtfeger, P. Metallophilic interactions in closed-shell copper(I) compounds-A theoretical study. Chem.-Eur. J. 2001, 7, 5333-5342, 10.1002/1521-3765(20011217)7:24<5333::AID-CHEM5333>3.0.CO;2-1
  • Magnko, L.; Schweizer, M.; Rauhut, G.; Schütz, M.; Stoll, H.; Werner, H.-J. A comparison of metallophilic attraction in (X-M-PH 3 ) 2 (M = Cu, Ag, Au; X= H, Cl). Phys. Chem. Chem. Phys. 2002, 4, 1006, 10.1039/b110624d
  • Carvajal, M. A.; Alvarez, S.; Novoa, J. J. The nature of intermolecular Cu(I)···Cu(I) interactions: a combined theoretical and structural database analysis. Chem.-Eur. J. 2004, 10, 2117-2132, 10.1002/chem.200305249
  • Yam, V. W.-W.; Au, V. K.-M.; Leung, S. Y.-L. Light-Emitting Self-Assembled Materials Based on d 8 and d 10 Transition Metal Complexes. Chem. Rev. 2015, 115, 7589-7728, 10.1021/acs.chemrev.5b00074
  • Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M. Gold-heterometal complexes. Evolution of a new class of luminescent materials. Dalton Trans. 2007, 1969-1981, 10.1039/B702838P
  • Yam, V. W.-W.; Cheng, E. C.-C. Highlights on the recent advances in gold chemistry-a photophysical perspective. Chem. Soc. Rev. 2008, 37, 1806-1813, 10.1039/b708615f
  • He, X.; Zhu, N.; Yam, V. W.-W. Design and synthesis of luminescence chemosensors based on alkynyl phosphine gold(I)-copper(I) aggregates. Dalton Trans. 2011, 40, 9703-9710, 10.1039/c1dt10197h
  • Yam, V. W.-W.; Li, C.-K.; Chan, C.-L. Proof of potassium ions by luminescence signaling based on weak Gold-gold interactions in dinuclear gold (I) complexes. Angew. Chem., Int. Ed. 1998, 37, 2857-2859, 10.1002/(SICI)1521-3773(19981102)37:20<2857::AID-ANIE2857>3.0.CO;2-G
  • Kobayashi, A.; Kato, M. Stimuli-responsive luminescent copper(I) complexes for intelligent emissive devices. Chem. Lett. 2017, 46, 154-162, 10.1246/cl.160794
  • Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M. Spanish Patent P200001391, 2003.
  • Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pérez, J.; Laguna, A.; Mohamed, A. A.; Fackler, J. P., Jr {Tl[Au(C 6 Cl 5 ) 2 ]} n A Vapochromic Complex. J. Am. Chem. Soc. 2003, 125, 2022-2023, 10.1021/ja028734u
  • Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.; Pérez, J.; Laguna, A.; Mendizabal, F.; Mohamed, A. A.; Fackler, J. P., Jr. A Detailed Study of the Vapochromic Behavior of {Tl[Au(C 6 Cl 5 ) 2 ]} n . Inorg. Chem. 2004, 43, 3573-3581, 10.1021/ic0499446
  • Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Puelles, R. C.; Laguna, A.; Mohamed, A. A.; Fackler, J. P., Jr. Vapochromic Behavior of {Ag 2 (Et 2 O) 2 [Au(C 6 F 5 ) 2 ] 2 } n with Volatile Organic Compounds. Inorg. Chem. 2008, 47, 8069-8076, 10.1021/ic800452w
  • Mansour, M. A.; Connick, W. B.; Lachicotte, R. J.; Gysling, H. J.; Eisenberg, R. Linear chain Au(I) dimer compounds as environmental sensors: a luminescent switch for the detection of volatile organic compounds. J. Am. Chem. Soc. 1998, 120, 1329-1330, 10.1021/ja973216i
  • Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Rodríguez, M. A.; Crespo, O.; Gimeno, M. C.; Laguna, A.; Jones, P. G. Heteropolynuclear complexes with the ligand Ph2PCH2SPh: Theoretical evidence for metallophilic Au-M attractions. Chem.-Eur. J. 2000, 6, 636-644, 10.1002/(SICI)1521-3765(20000218)6:4<636::AID-CHEM636>3.0.CO;2-A
  • Usón, R.; Laguna, A.; Laguna, M.; Jones, P. G.; Sheldrick, G. M. Synthesis and reactivity of bimetallic Au-Ag complexes. X-ray structure of a chain polymer containing the moiety (F 5 C 6 ) 2 Au(μ-AgSC 4 H 8 ) 2 Au(C 6 F 5 ) 2 . J. Chem. Soc., Chem. Commun. 1981, 1097-1098, 10.1039/C39810001097
  • Usón, R.; Laguna, A.; Laguna, M.; Manzano, B. R.; Jones, P. G.; Sheldrick, G. M. Synthesis and reactivity of bimetallic Au-Ag polyfluorophenyl complexes; Crystal and molecular structures of [{AuAg(C 6 F 5 ) 2 (SC 4 H 8 )} n ] and [{AuAg(C 6 F 5 ) 2 (C 6 H 6 )} n ]. J. Chem. Soc., Dalton Trans. 1984, 285-292, 10.1039/DT9840000285
  • Savjani, N.; Wilkinson, L. A.; Hughes, D. L.; Schormann, M.; Bochmann, M. Synthesis, structure and luminescent behavior of anionic oligomeric and polymeric Ag 2 Au 2 cluster. Organometallics 2012, 31, 7600-7609, 10.1021/om300911h
  • Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E. Unsupported Gold(I)-Copper(I) interactions through η 1 Au-[Au(C 6 F 5 ) 2 ] - Coordination to Cu + Lewis acid sites. Inorg. Chem. 2005, 44, 1163-1165, 10.1021/ic048346o
  • López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D.; Rodríguez-Castillo, M. Very short metallophillic interactions induced by three-center-two-electron perhalophenyl ligands in phosphorescent Au-Cu complexes. Organometallics 2012, 31, 3720-3729, 10.1021/om300204x
  • Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.; Rodríguez-Castillo, M. Unsupported Au(I)···Cu(I) interactions: influence of nitrile ligands and aurophilicity on the structure and luminescence. Dalton Trans. 2009, 7509-7518, 10.1039/b900768g
  • López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D.; Rodríguez-Castillo, M. Influence of the electronic characteristics of N-Donor ligands in the excited state of heteronuclear Gold(I)-Copper(I) systems. Inorg. Chem. 2011, 50, 6910-6921, 10.1021/ic102550z
  • Fernández, E. J.; López-de-Luzuriaga, J. M.; Olmos, M. E.; Pérez, J. et al. A family of Au-Tl loosely bound butterfly clusters. Inorg. Chem. 2005, 44, 6012-6018, 10.1021/ic050060b
  • Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Montiel, M.; Olmos, M. E.; Pérez, J. Au-Tl linear chains as Lewis acid toward [Au(C 6 X 5 ) 2 ] - metalloligands: the first anionic heteropolymetallic chains. Organometallics 2005, 24, 1631-1637, 10.1021/om049021i
  • Blake, A. J.; Donamaría, R.; Fernández, E. J.; Lasanta, T.; Lippolis, V.; López-de-Luzuriaga, J. M.; Manso, E.; Monge, M.; Olmos, M. E. Heterometallic gold(I)-thallium(I) compounds with crown thioethers. Dalton Trans. 2013, 42, 11559-11570, 10.1039/c3dt51334c
  • Arca, M.; Donamaría, R.; Gimeno, M. C.; Lippolis, V.; López-de-Luzuriaga, J. M.; Manso, E.; Monge, M.; Olmos, M. E. 1,4-Bis((2'-pyridylethynyl)benzene as a ligand in heteronuclear gold-thallium complexes. Influence of the ancillary ligands on their optical properties. Dalton Trans. 2015, 44, 6719-6730, 10.1039/C4DT03413A
  • López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D.; Lasanta, T. Amalgamating at the molecular level. A study of the strong closed-shell Au(I)···Hg(II) interaction. Chem. Commun. 2011, 47, 6795-6797, 10.1039/c1cc11036e
  • Echeverría, R.; López-de-Luzuriaga, J. M.; Monge, M.; Moreno, S.; Olmos, M. E. New insights into the Au(I)···Pb(II) closed shell interaction. Tuning of the emissive properties with the intermetallic distance. Inorg. Chem. 2016, 55, 10523-10534, 10.1021/acs.inorgchem.6b01749
  • Echeverría, R.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E. The gold(I)···lead(II) interaction: a relativistic connection. Chem. Sci. 2015, 6, 2022-2026, 10.1039/C4SC03680H
  • Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.; Rodríguez-Castillo, M. Photophysical and theoretical studies on luminescent tetranuclear coinage metal building blocks. Organometallics 2006, 25, 3639-3646, 10.1021/om060181z
  • Fernández, E. J.; Gimeno, M. C.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Pyykkö, P.; Sundholm, D. Luminescent characterization of solution oligomerization process mediated gold-gold interactions. DFT calculations on [Au 2 Ag 2 R 4 L 2 ] n moieties. J. Am. Chem. Soc. 2000, 122, 7287-7293, 10.1021/ja9942540
  • Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Olmos, M. E.; Puelles, R. C. Vapochromism in complexes of stoichiometry [Au 2 Ag 2 R 4 L 2 ] n . Z. Naturforsch., B: J. Chem. Sci. 2009, 64b, 1500-1512, 10.1515/znb-2009-11-1234
  • Laguna, A.; Lasanta, T.; López-de-Luzuriaga, J. M.; Monge, M.; Naumov, P.; Olmos, M. E. Combining aurophillic interactions and halogen bonding to control the luminescence from bimetallic Gold-Silver clusters. J. Am. Chem. Soc. 2010, 132, 456-457, 10.1021/ja909241m
  • Lasanta, T.; Olmos, M. E.; Laguna, A.; López-de-Luzuriaga, J. M.; Naumov, P. Making the golden connection: reversible mechanochemical and vapochemical switching of luminescence from bimetallic gold-silver cluster associated through aurophillic interactions. J. Am. Chem. Soc. 2011, 133, 16358-16361, 10.1021/ja206845s
  • Donamaría, R.; Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D.; Rodríguez-Castillo, M. New Au(I)-Cu(I) heterometallic complexes: the role of bridging pyridazine ligands in the presence of unsupported metallophillic interactions. Dalton Trans. 2017, 46, 10941-10949, 10.1039/C7DT02229H
  • Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68 (3), 441-451, 10.1021/j100785a001
  • Janiak, C. A critical account on π- π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton Trans. 2000, 3885-3896, 10.1039/b003010o
  • Hamamci, S.; Yilmaz, V. T.; Büyükgüngör, O. Monoclinic and triclinic concomitant polymorphs of di-μ-pyridazine-1k 2 N:2k 2 N'-bis[(saccharinato)silver(I)]. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2006, C62, m1-m3, 10.1107/S0108270105036334
  • Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Polymeric helical motifs from the self-assembly of silver salts and pyridazine. Inorg. Chem. 1998, 37, 5941-5943, 10.1021/ic9805022
  • Lin, H.; Wu, X.; Maggard, P. A. Ligand Based-Modification of the Structures and Optical Properties of New Silver(I)-Rhenate(VII) Oxide/Organic Hybrid Solids. Inorg. Chem. 2009, 48, 11265-11276, 10.1021/ic901749r
  • Türkmen, Y. E.; Sen, S.; Rawal, V. H. Stacks and clips: uncanny similarities in the modes of self-assembly in ternary Ag(I) complexes with 1,2-diazines and chelating heteroarenes. CrystEngComm 2013, 15, 4221-4224, 10.1039/c3ce40500a
  • Wang, D.-F.; Zhang, T.; Dai, S.-M.; Huang, R.-B.; Zheng, L.-S. Structural variation in silver(I) complexes with pyridazine ligand and aromatic polycarboxylic acids: structural analysis with silver chains. Inorg. Chim. Acta 2014, 423, 193-200, 10.1016/j.ica.2014.08.013
  • Dias, H. V. R.; Diyabalanage, H. V. K.; Gamage, C. S. P. Neutral Cu 4 N 12 and Ag 4 N 12 metallacycles with a para-cyclophane framework assembled from copper(I) and silver(I) pyrazolates and pyridazine. Chem. Commun. 2005, 1619-1621, 10.1039/b418306a
  • López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Quintana, J.; Rodríguez-Castillo, M. Unequal coordination environment in complexes of the type [Au 2 Ag 2 (R) 4 (L) 2 ] n An immiscible solvent mixture as a key point in the control of ligand replacement. Dalton Trans. 2018, 47, 3231-3238, 10.1039/C8DT00024G
  • Wrighton, M.; Morse, D. L. The nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes. J. Am. Chem. Soc. 1974, 96, 998-1003, 10.1021/ja00811a008
  • Itokazu, M. K.; Polo, A. S.; Iha, N. Y. M. Luminescent rigidochormism of fac-[Re(CO) 3 (phen)(cis-bpe)] + and its binuclear complex as photosensors. J. Photochem. Photobiol., A 2003, 160, 27-32, 10.1016/S1010-6030(03)00216-8
  • Fernandez, E. J.; Jones, P. G.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Pérez, J.; Olmos, M. E. Synthesis, structure, and photophysical studies of luminescent two- and three-dimensional gold-thallium supramolecular arrays. Inorg. Chem. 2002, 41, 1056-1063, 10.1021/ic010961u
  • Sheldrick, G. M. SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Germany, 1997.
  • Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155-2160, 10.1063/1.462066
  • Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652, 10.1063/1.464913
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789, 10.1103/PhysRevB.37.785
  • Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162, 165-169, 10.1016/0009-2614(89)85118-8
  • Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454-464, 10.1016/0009-2614(96)00440-X
  • Bauernschmitt, R.; Ahlrichs, R. Stability analysis for solutions of the closed shell Kohn-Sham equation. J. Chem. Phys. 1996, 104, 9047-9052, 10.1063/1.471637
  • Bauernschmitt, R.; Häser, M.; Treutler, O.; Ahlrichs, R. Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. Chem. Phys. Lett. 1997, 264, 573-578,. and references therein 10.1016/S0009-2614(96)01343-7
  • Gross, E. K. U.; Kohn, W. Time-Dependent Density-Functional Theory. Adv. Quantum Chem. 1990, 21, 255-291, 10.1016/S0065-3276(08)60600-0
  • Casida, M. E. In Recent Advances in Density Functional Methods; Chong, D. P., Ed.; World Scientific: Singapore, 1995; Vol 1.
  • Olsen, J.; Jørgensen, P. In Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific: Singapore, 1995; Vol 2.
  • Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571-2577, 10.1063/1.463096
  • Schäfer, A. et al. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829-5835, 10.1063/1.467146
  • Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123-141, 10.1007/BF01114537