Unequivocal Experimental Evidence of the Relationship between Emission Energies and Aurophilic Interactions

  1. Blake, A.J. 1
  2. Donamaría, R. 12
  3. Lippolis, V. 3
  4. López-De-Luzuriaga, J.M. 2
  5. Monge, M. 2
  6. Olmos, M.E. 2
  7. Seal, A. 1
  8. Weinstein, J.A. 4
  1. 1 University of Nottingham
    info

    University of Nottingham

    Nottingham, Reino Unido

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

  3. 3 University of Cagliari
    info

    University of Cagliari

    Cagliari, Italia

  4. 4 University of Sheffield
    info

    University of Sheffield

    Sheffield, Reino Unido

Journal:
Inorganic Chemistry

ISSN: 1520-510X

Year of publication: 2019

Volume: 58

Number: 8

Pages: 4954-4961

Type: Article

Exportar: RIS
DOI: 10.1021/acs.inorgchem.8b03621 PMID: 30794397 SCOPUS: 2-s2.0-85064435999
bar_chart Ver indicadores

Summary

In this paper, we describe experimental evidence of a change in the emission energy as a function of the Au-Au distance. We have employed a luminescent complex exhibiting an aurophilic interaction, which is weak enough to allow its length to be modified by external pressure but rigid enough to confer structural stability on the complex. By determining the crystal structures and emission characteristics over a range of pressures, we have identified an exponential relationship between the energy of the emitted light and the metal-metal distances under pressure. This result can be indirectly related to the repulsive branch of the fitted function representing the energy of the system in the ground state at different Au-Au distances. The relativistic nature of gold appears to play an important role in the behavior of this complex.

Bibliographic References

  • Pyykkö, P. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97, 597-636, 10.1021/cr940396v
  • Pyykkö, P. Relativity, gold, closed-shell interactions, and CsAu·NH 3 . Angew. Chem., Int. Ed. 2002, 41, 3573-3578, 10.1002/1521-3773(20021004)41:19<3573::AID-ANIE3573>3.0.CO;2-R
  • Schmidbaur, H.; Schier, A. A briefing on aurophilicity. Chem. Soc. Rev. 2008, 37, 1931-1951, 10.1039/b708845k
  • Schmidbaur, H.; Schier, A. Aurophilic interactions as a subject of current research: an up-date. Chem. Soc. Rev. 2012, 41, 370-412, 10.1039/C1CS15182G
  • Schmidbaur, H.; Schier, A. Argentophilic Interactions. Angew. Chem., Int. Ed. 2015, 54, 746-784, 10.1002/anie.201405936
  • Donamaria, R.; Gimeno, M. C.; Lippolis, V.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E. Tuning the Luminiscent Properties of a Ag/Au Tetranuclear Complex Featuring Metallophilic Interactions via Solvent-Dependent Structural Isomerization. Inorg. Chem. 2016, 55, 11299-11310, 10.1021/acs.inorgchem.6b01819
  • Roundhill, D. M. Photochemistry and Photophysics of Metal Complexes; Plenum Press: New York, 1994; pp 122-124.
  • Roundhill, D. M.; Fackler, J. P., Jr. Optoelectronic Properties of Inorganic Compounds; Plenum Press: New York, 1999; p 254.
  • Coker, N. L.; Krause Bauer, J. A.; Elder, R. C. Emission Energy Correlates with Inverse of Gold-Gold Distance for Various [Au(SCN) 2 ] - Salts. J. Am. Chem. Soc. 2004, 126, 12-13, 10.1021/ja037012f
  • Baranyai, P.; Marsi, G.; Hamza, A.; Jobbágy, C.; Deák, A. Structural characterization of dinuclear gold(I) diphosphine complexes with anion-triggered luminescence. Struct. Chem. 2015, 26, 1377-1387, 10.1007/s11224-015-0674-9
  • Elbjeirami, O.; Omary, M. A.; Stender, M.; Balch, A. L. Anomalous structure-luminescence relationship in phosphorescent gold(I) isonitrile neutral complexes. Dalton Trans. 2004, 3173-3175, 10.1039/B410657A
  • Elbjeirami, O.; Gonser, M. W. A.; Stewart, B. N.; Bruce, A. E.; Bruce, M. R. M.; Cundari, T. R.; Omary, M. A. Luminescence, structural, and bonding trends upon varying the halogen in isostructural aurophilic dimers. Dalton Trans. 2009, 1522-1533, 10.1039/B813875C
  • Hiraga, T.; Uchida, T.; Kitamura, N.; Kim, H.-B.; Tazuke, S.; Yagi, T. Excited-State Properties of a Diplatinum(II) Complex under High Pressure. J. Am. Chem. Soc. 1989, 111, 7466-7469, 10.1021/ja00201a029
  • Bar, L.; Englmeier, H.; Gliemann, G.; Klement, U.; Range, K.-J. Luminescence at High Pressures and Magnetic Fields and the Structure of Single-Crystal Platinum(II) Binuclear Complexes M x [Pt 2 (POP) 4 ]· nH 2 O (M x =Ba 2 , [NH 4 ] 4 ; POP = P 2 O 5 H 2 2- ). Inorg. Chem. 1990, 29, 1162-1168, 10.1021/ic00331a011
  • Stock, M.; Yersin, H. Polarized Emission from Ba[Pt(CN) 4 ]·H 2 O Single Crystals under High Pressure. Chem. Phys. Lett. 1976, 40 (3), 423-428, 10.1016/0009-2614(76)85111-1
  • Yersin, H.; Gliemann, G. Spectroscopic Studies of M x [Pt(CN) 4 ]· y H 2 O. Ann. N. Y. Acad. Sci. 1978, 313, 539-559, 10.1111/j.1749-6632.1978.tb39445.x
  • Yersin, H.; Riedl, U. Extreme Pressure-Induced Shifts of Emission Energies in M[Au(CN) 2 ] and M 2 [Pt(CN) 4 ]· nH 2 O Compounds with Low-Dimensional Metal-Metal Interactions. Inorg. Chem. 1995, 34, 1642-1645, 10.1021/ic00111a006
  • Fischer, P.; Mesot, J.; Lucas, B.; Ludi, A.; Patterson, H.; Hewat, A. Pressure Dependence Investigation of the Low-Temperature Structure of TlAu(CN) 2 by High-Resolution Neutron Powder Diffraction and Optical Studies. Inorg. Chem. 1997, 36, 2791-2794, 10.1021/ic961405g
  • Strasser, J.; Yersin, H.; Patterson, H. H. Effect of high pressure on the emission spectrum of single crystals of Tl[Au(CN) 2 ]. Chem. Phys. Lett. 1998, 295, 95-98, 10.1016/S0009-2614(98)00915-4
  • Baril-Robert, F.; Radtke, M. A.; Reber, C. Pressure-Dependent Luminescence Properties of Gold(I) and Silver(I) Dithiocarbamate Compounds. J. Phys. Chem. C 2012, 116, 2192-2197, 10.1021/jp206766p
  • Woodall, C. H.; Fuertes, S.; Beavers, C. M.; Hatcher, L. E.; Parlett, A.; Shepherd, H. J.; Christensen, J.; Teat, S. J.; Intissar, M.; Rodrigue-Witchel, A.; Suffren, Y.; Reber, C.; Hendon, C. H.; Tiana, D.; Walsh, A.; Raithby, P. R. Tunable Trimers: Using Temperature and Pressure to Control Luminescent Emission in Gold(I) Pyrazolate-Based Trimers. Chem.-Eur. J. 2014, 20, 16933-16942, 10.1002/chem.201404058
  • O'Connor, A. E.; Mirzadeh, N.; Bhargava, S. K.; Easun, T. L.; Schröder, M.; Blake, A. J. Aurophilicity under pressure: a combined crystallographic and in situ spectroscopic study. Chem. Commun. 2016, 52, 6769-6772, 10.1039/C6CC00923A
  • Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverrĺa, J.; Cremades, E.; Barragán, S.; álvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832-2838, 10.1039/b801115j
  • Citroni, M.; Bini, R.; Foggi, P.; Schettino, V. Role of excited electronic states in the high-pressure amorphization of benzene. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 7658-7663, 10.1073/pnas.0802269105
  • Forman, R. A.; Piermarini, G. J.; Barnett, J. D.; Block, S. Pressure measurement made by the utilization of ruby sharp-line luminescence. Science 1972, 176, 284-285, 10.1126/science.176.4032.284
  • CrysAlisPro; Oxford Diffraction Ltd.: Oxford, U.K., 2008-2015.
  • SADABS, version 2008/1; Bruker AXS Inc.: Madison, WI, 2001.
  • Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341, 10.1107/S0021889808042726
  • Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122, 10.1107/S0108767307043930
  • Frisch, M. J.; Trucks, G. W.; Schlgel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.
  • Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158-6171, 10.1063/1.478522
  • Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123-141, 10.1007/BF01114537
  • Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuss, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17. Mol. Phys. 1993, 80, 1431-1441, 10.1080/00268979300103121
  • Huzinaga, S. Gaussian Basis Sets for Molecular Calculations; Elsevier: Amsterdam, The Netherlands, 1984; p 16.
  • Huzinaga, S. Gaussian Type Functions for Polyatomic Systems. I. J. Chem. Phys. 1965, 42, 1293-1302, 10.1063/1.1696113