Poisson excess relative risk modelsnew implementations and software
- Manuel Higueras 1
- Adam Howes 2
- 1 Departamento de Matem ́ aticas y Computación, Universidad de La Rioja
-
2
Basque Center for Applied Mathematics
info
ISSN: 1696-2281
Any de publicació: 2018
Volum: 42
Número: 2
Pàgines: 237-252
Tipus: Article
beta Ver similares en nube de resultadosAltres publicacions en: Sort: Statistics and Operations Research Transactions
Resum
Two new implementations for fitting Poisson excess relative risk methods are proposed for as- sumed simple models. This allows for estimation of the excess relative risk associated with a unique exposure, where the background risk is modelled by a unique categorical variable, for example gender or attained age levels. Additionally, it is shown how to fit general Poisson linear relative risk models in R. Both simple methods and the R fitting are illustrated in three examples. The first two examples are from the radiation epidemiology literature. Data in the third example are randomly generated with the purpose of sharing it jointly with the R scripts.
Informació de finançament
This research was supported by the Basque Government through the BERC 360 2014-2017 and the Spanish Ministry of Economy and Competitiveness MINECO and FEDER: BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and MINECO Challenges MTM2017-82379-R.Finançadors
-
- 360 2014-2017
-
- MTM2017-82379-R
- Eusko Jaurlaritza Spain
-
Federación Española de Enfermedades Raras
Spain
- SEV-2013-0323
Referències bibliogràfiques
- Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation (2006). Health Risks from exposure to low levels of ionizing radiation. BEIR VII Phase 2. Washington: The National Academies Press.
- Christensen, R., Johnson, W., Brasncum, A. and Hanson, T.E. (2011). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians. Boca Raton: Champman & Hall/CRC Press.
- Grant, E.J., Brenner, A., Sugiyama, H., Sakata, R., Sadakane, A., Utada, M., Cahoon, E. K., Milder, C. M., Soda, M., Cullings, H. M., Preston, D. L., Mabuchi, K. and Ozasa, K. (2017). Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiation Research, 187(5), 513–537.
- Harbron, R.W., Chapple, C.-L., O’Sullivan, J.J., Lee, C, McHugh, K., Higueras, M. and Pearce, M.S. (2018). Cancer incidence among children and young adults who have undergone x-ray guided cardiac catheterization procedures. European Journal of Epidemiology, 33(4), 393–401.
- Henningsen, A. and Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26(3), 443–458.
- Journy, N., Rehel, J.-L., Ducou Le Pointe, H., Lee, C., Brisse, H., Chateil, J.-F., Caer-Lorho, S., Laurier, D. and Bernier, M.-O. (2015). Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France. British Journal of Cancer, 112(1), 185–193.
- McCullagh, P. and Nelder, J. (1989). Generalized Linear Models, 2nd edition. Boca Raton: Champman & Hall/CRC Press.
- MorinnÌa, D. (2016). linERR: Linear Excess Relative Risk Model, version 1.0, URL: https://CRAN.Rproject.org/package=linERR.
- Pearce, M.S., Salotti, J.A., Little, M.P., Mchugh, K., Lee, C., Kim, K.P., Howe, N.L., Ronckers, C.M., Rajaraman, P., Craft, A.W., Parker, L. and Berrington de GonzaÌlez, A. (2012). Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 380(9840), 499–505.
- Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Preston, D.L., Lubin, J.H., Pierce, D.A. and McConney, M.E. (1993). Epicure: user’s guide. Seattle:
- Hirosoft International Corporation. R Core Team (2017). R: A language and environment for statistical computing. Vienna: R Foundation for
- Statistical Computing. URL https://www.R-project.org/. Richardson, D.B. (2008). A simple approach for fitting linear relative rate models in SAS.American Journal of Epidemiology, 168(11), 1333–1338.
- Therneau, T. (2015). A Package for Survival Analysis in S, version 2.38, URL: https://CRAN.R-project.org/ package=survival.
- Turner, H. and Firth, D. (2018). Generalized nonlinear models in R: An overview of the gnm package, version 1.1-0, URL: https://cran.r-project.org/package=gnm.