The relevance of hydrological research in small catchmentsa perspective from long-term monitoring sites in Europe

  1. J. Latron 1
  2. N. Lana-Renault 2
  1. 1 Instituto de Diagnóstico Ambiental y Estudios del Agua
    info

    Instituto de Diagnóstico Ambiental y Estudios del Agua

    Barcelona, España

    ROR https://ror.org/056yktd04

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Latron, J. (ed. lit.)
  2. Lana-Renault Monreal, Noemí (ed. lit.)

ISSN: 0211-6820 1697-9540

Any de publicació: 2018

Volum: 44

Número: 2

Pàgines: 387-395

Tipus: Article

DOI: 10.18172/CIG.3499 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Altres publicacions en: Cuadernos de investigación geográfica: Geographical Research Letters

Repositori institucional: lock_openAccés obert Editor

Resum

The usefulness of small (< 10 km2) catchments has been repeatedly recognized during the recent history of hydrological research. This foreword to the special issue of Cuadernos de Investigación Geográfica – Geographical Research Letters devoted to long term hydrological research in small catchment in Europe highlights the main reasons for promoting the small catchment approach and revises its growing use, starting with the first catchment studies in Switzerland for management purposes, and followed by the development of more interdisciplinary research programs that used small catchments as field laboratories, long-term observatories, sites for method and model validation, and places for training young researchers. The volume includes nine contributions concerning studies carried out in long term monitoring sites in several European countries and aims at showing the relevance of the small catchment approach in hydrological research in Europe.

Referències bibliogràfiques

  • Ambroise, B. 1994. Du BVRE, bassin versant représentatif et expérimental, au BVR, bassin versant de recherche. In: D. Houi., J.L. Verrel (Eds.), Du Concept de BVRE à celui de Zone Atelier dans les Recherches menées en Eaux Continentales, Actes du Séminaire National Hydrosystèmes, Paris, pp. 11-24.
  • Ambroise, B. 1999. La Dynamique du Cycle de l’Eau dans un Bassin Versant. -Processus, Facteurs, Modèles. *H*G*A, 200 pp.
  • Bates, C.G., Henry, A.J. 1928. Forest and streamflow experiment at Wagon wheel Gap, Colorado. Monthly Weather Review Supplement 30.
  • Becker, A., Günter, A., Katzenmaier, D. 1999. Required integrated approach to understand runoff generation and flow-path dynamics in catchments. In: C. Leibundgut, J. McDonnell, G. Schultz, (Eds.), Integrated Methods in Catchment Hydrology-Tracer, Remote Sensing and New Hydrometric Techniques. IAHS Publication 258, 3-9.
  • Betson, R.P. 1964. What is watershed runoff? Journal of Geophysical Research 69 (8), 1541-1552. https://doi.org/10.1029/JZ069i008p01541.
  • Beven, K. 2016. Advice to a young hydrologist. Hydrological Processes 30, 3578-3582. https://doi.org/10.1002/hyp.10879.
  • Bonell, M. 1993. Progress in the understanding of runoff generation dynamics in forests. Journal of Hydrology 150, 217-275. https://doi.org/10.1016/0022-1694(93)90112-M.
  • Brechtel, H.M., Führer, H.W. 1991. Water yield control in beech forest. A paired watershed study in the Krofdorf forest research area. In: G. Kienitz, P.C.D. Milly, M.Th. Van Genuchten, D. Rosbjerg, W.J. Shuttleworth (Eds.), Hydrological Interactions Between Atmosphere, Soil and Vegetation. IAHS Publication 204, 477-484.
  • Burt, T.P., McDonnell, J.J. 2015. Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resources Research 51, 5919-5928. https://doi.org/10.1002/2014WR016839.
  • Cappus, P. 1960. Bassin expérimental d’Alrance. Étude des lois de l’écoulement. Application au calcul et à la prévision des débits. La Houille Blanche A, 493-520. https://doi.org/10.1051/lhb/1960007.
  • Christophersen, N., Neal, C. 1990. Linking hydrological, geochemical, and soil chemical processes on the catchment scale: An interplay between modeling and field work. Water Resources Research 26 (12), 3077-3086. https://doi.org/ 10.1029/WR026i012p03077.
  • Collins, S.L., Childers, D.L. 2014. Long-Term Ecological Research and Network-Level Science. EOS Transactions American Geophysical Union 95 (33), 293-294. https://doi.org/10.1002/2014EO330001.
  • DeCoursey D.G. 1991. Mathematical models: Research tools for experimental watersheds. In: D.S. Bowles and P.E. O’Connell (Eds.), Recent Advances in the Modelling of Hydrologic Systems. NATO ASI Series C, Vol. 345, Kluwer Academic Publ, pp. 591-612.
  • Dubreuil, P.L. 1989. Pour un suivi à long terme de l’évolution des ressources en eau grâce à un réseau européen de bassins de référence. Hydrogéologie 2, 111-114.
  • Dunne, T. 1983. Relation of field studies and modeling in the prediction of storm runoff. Journal of Hydrology 65, 25-48. https://doi.org/10.1016/0022-1694(83)90209-3.
  • Forschungszentrum Jülich, Helmholtz Centre for Environmental Research, Karlsruhe Institute of Technology, Helmholtz Zentrum München, German Aerospace Center, German Research Centre for Geosciences. 2016. TERENO: German network of terrestrial environmental observatories, Journal of Large-Scale Research Facilities 2, A52. http://doi.org/10.17815/jlsrf-2-98.
  • Gascuel-Odoux, C.Fovet, O., Gruau, G., Ruiz, L., Merot, P. 2018. Evolution of scientific questions over 50 years in the Kervidy-Naizin catchment: from catchment hydrology to integrated studies of biogeochemical cycles and agroecosystems in a rural landscape. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). . https://doi.org/10.18172/cig.3383.
  • Grant, G.E., Dietrich, W.E. 2017. The frontier beneath our feet, Water Resources Research 53. https://doi.org/10.1002/2017WR020835.
  • Grayson, R.B., Moore, I.D., McMahon, T.A. 1992. Physically based hydrological modelling 2. Is the concept realistic? Water Resources Research 28 (10), 2659-2666. https://doi.org/10.1029/92WR01259.
  • Hewlett, J.D. 1961. Watershed management. In: USDA Forest Service Annual Report, Southeast Forest Experimental Station, Ashville, NC, pp.61-66.
  • Hewlett, J.D. 1982. Principles of forest hydrology. University of Georgia Press, 183 pp.
  • Hewlett, J.D., Lull, H.W., Reinhart, K.G. 1969. In defense of experimental watersheds. Water Resources Research 5 (1), 306-316. https://doi.org/10.1029/WR005i001p00306.
  • Holko, L., Bičárová, S., Hlavčo, J., Danko, M., Kostka, Z. 2018. Isotopic hydrograph separation in two small mountain catchments during multiple events. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3344.
  • Holzmann, H. 2018. Status and perspectives of hydrological research in small basins in Europe. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3406.
  • Hoover, M. 1944. Effect of removal forest vegetation upon water-yields. EOS Transactions American Geophysical Union 25, 969-977. https://doi.org/10.1029/TR025i006p00969.
  • Hursh, C.R., Brater, E.F. 1941. Separating storm-hydrographs from small drainage-areas into surface- and subsurface-flow. EOS Transactions American Geophysical Union 22, 863-871. https://doi.org/10.1029/TR022i003p00863.
  • Keller, H.M. 1988. European experiences in long-term forest hydrology research. In: W.T. Swank, D.A. Crossley Jr. (Eds.), Forest Hydrology and Ecology at Coweeta. Ecological Studies. Vol. 66, Springer-Verlag, pp. 407-414.
  • Kirkby, M.J. (Ed.) 1978. Hillslope Hydrology. Wiley-Interscience Publ., 389 pp.
  • Knapp, A.K., Smith, M.D, Hobbie, S.E., Collins, S.L., Fahey, T.J., Hansen, G.J.A., Landis, D.A., La Pierre, K.J., Melillo, J.M., Seastedt, T.R., Shaver, G.R., Webster, J.R. 2012, Past, present, and future roles of long-term experiments in the LTER Network, BioScience 62, 377-389. https://doi.org/10.1525/bio.2012.62.4.9.
  • Krause, S., Lewandowski, J., Grimm, N.B., Hannah, D.M., Pinay, G., McDonald, K., Martí, E., Argerich, A., Pfister, L., Klaus, J., Battin, T., Larned, S.T., Schelker, J., Fleckenstein, J., Schmidt, Ch., Rivett, M.O., Watts, G., Sabater, F., Sorolla, A., Turk, V. 2017. Ecohydrological interfaces as hot spots of ecosystem processes, Water Resources Research 53, 6359-6376. https://doi.org/10.1002/2016WR019516.
  • Lana-Renault, N., López-Vicente, M., Nadal-Romero, E., Ojanguren, R., Llorente, J.A., Errea, P., Regüés, D., Ruiz-Flaño, P., Khorchani, M., Arnaez, J., Pascual, N. 2018. Catchment based hydrology under post farmland abandonment scenarios. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3475.
  • Leclerc, L.-A. 1992. Recherche et développement sur la gestion des eaux: La politique des bassins versants représentatifs expérimentaux (BVRE). Hydrogéologie 4, 133-137.
  • Likens, G.E., Bormann, F.H., Pierce, R.S., Eaton, J.S., Johnson, N.M. 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag, 146 pp.
  • Llorens, P., Gallart, F., Cayuela, C., Roig-Planasdemunt, M., Casellas, E., Molina, A.J., Moreno De Las Heras, M., Bertran, G., Sánchez-Costa, E., Latron, J. 2018. What have we learnt about Mediterranean catchment hydrology? 30 years observing hydrological processes in the Vallcebre research catchments. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3432.
  • Masselink, R.J.H., Temme, A.J.A.M., Giménez, R., Casalí, J., Keesstra, S.D. 2017. Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica - Geographical Research Letters 43 (1), 19-39. https://doi.org/10.18172/cig.3169.
  • McDonnell, J.J., Beven, K. 2014. Debates-The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities, and residence time distributions of the headwater hydrograph. Water Resources Research 50, 5342-5350. https://doi.org/10.1002/2013WR015141.
  • Mirtl, M. 2010. Introducing the Next Generation of Ecosystem Research in Europe: LTER-Europe’s Multi-Functional and Multi-Scale Approach. In: F. Müller, C. Baessler, H. Schubert, S. Klotz (Eds.), Long-Term Ecological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8782-9_6.
  • Mosley, M.P. 1979. Streamflow generation in a forested watershed, New Zealand, Water Resources Research 15 (4), 795-806. https://doi.org/10.1029/ WR015i004p00795.
  • Pearce, A.J., Stewart, M.K., Sklash, M.G. 1986. Storm runoff generation in humid headwater catchments: 1. Where does the water come from? Water Resources Research 22 (8), 1263-1272. https://doi.org/10.1029/WR022i008p01263.
  • Pfister, L. Wetzel, C.E., Klaus, J., Martínez-Carreras, J., Antonelli, M., Teuling, A.J., McDonnell, J.J. 2017. Terrestrial diatoms as tracers in catchment hydrology: a review. WIREs Water 4, e1241. https://doi.org/10.1002/wat2.1241.
  • Philip, J.R. 1991. Soils, natural science and models. Soil Science 151, 91-98.
  • Preti, F, Guastini, E., Penna, D., Dani, A., Cassiani, G., Boaga, J., Deiana, R., Romano, N., Nasta, P., Palladino, M., Errico, A., Giambastiani, Y., Trucchi, P., Tarolli, P. 2017. Conceptualization of water flow pathways in agricultural terraced landscapes. Land Degradation & Development. https://doi.org/10.1002/ldr.2764.
  • Rodríguez-Caballero, E., Lázaro, R., Cantón, Y., Puigdefábregas, J., Solé-Benet, A. 2018. Long-term hydrological monitoring in arid-semiarid Almería, SE Spain. What have we learned? Cuadernos de Investigación Geográfica - Geographical Research Letters 44(2). https://doi.org/10.18172/cig.3462.
  • Schnabel, S., Lozano Parra, J., Gómez-Gutiérrez, A., Alfonso-Torreño, A. 2018. Hydrological dynamics in a small catchment with silvopastoral land use in SW Spain. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3378.
  • Schumann, S., Schmalz, B., Meesenburg, H., Schröder, U. (Eds.) 2010. Status and Perspectives of Hydrology in Small Basins. Results of the International Workshop in Goslar-Hahnenklee, 2009 and Inventory of Small Hydrological Research Basins. IHP/HWRP-Berichte 10, Koblenz, Germany. http://www.euro-friend.de.
  • Seibert, J., McDonnell, J.J. 2002. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration, Water Resources Research 38 (11), 1241. https://doi.org/10.1029/2001WR000978.
  • Sklash, M.G., Stewart, M.K. Pearce, A.J. 1986. Storm runoff generation in humid headwater catchments: 2. A case study of hillslope and low-order stream response, Water Resources Research 22 (8), 1273-1282. https://doi.org/10.1029/WR022i008p01273.
  • Stähli, M., Badoux, A., Ludwig, A., Steiner, K., Zappa, M., Hegg, Ch. 2011. One century of hydrological monitoring in two small catchments with different forest coverage. Environmental Monitoring and Assessment 174, 91-106. https://doi.org/10.1007/s10661-010-1757-0.
  • Swank W.T., Crossley Jr, D.A. (Eds.) 1988. Forest Hydrology and Ecology at Coweeta. Ecological Studies, Vol. 66, Springer-Verlag, 512 pp.
  • Swank, W.T., Swift Jr, L.W., Douglass, J.E. 1988. Streamflow changes associated with forest cutting, species conversions, and natural disturbances. In: W.T. Swank, D.A. Crossley Jr (Eds.), Forest Hydrology and Ecology at Coweeta. Ecological Studies, Vol. 66, Springer-Verlag, pp. 297-312.
  • Tetzlaff, D., Carey, S.K., McNamara, J.P., Laudon, H., Soulsby, C. 2017. The essential value of long-term experimental data for hydrology and water management. Water Resources Research 53 (4), 2598-2604. https://doi.org/10.1002/2017WR020838.
  • Tiwari, T., Lundström, J., Kuglerova, L., Laudon, L., Öhman, K., Ågren, A.M. 2016. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths. Water Resources Research 52, 1056-1069. https://doi.org/10.1002/2015WR018014.
  • Tsukamoto, Y. 1963. Storm Discharge from an Experimental Watershed. Journal of the Japanese Forestry Society 45 (6), 186-190. https://doi.org/10.11519/jjfs1953.45.6_186.
  • van Meerveld, I.H.J., Fischer, B.M.C, Rinderer, M., Stähli, M., Seibert, J. 2018. Runoff generation in a pre-alpine catchment: a discussion between a tracer and a shallow groundwater hydrologist. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3349.
  • Ward, R.C. 1971. Small Watershed Experiments – An appraisal of concepts and research developments. University of Lull Printers Ltd, U.K., 254pp.
  • White, T., Brantley, S., Banwart, S., Chorover, J., Dietrich, W., Derry, L., Lohse, K., Anderson, S., Aufdendkampe, A., Bales, R., Kumar, P., Richter, D., McDowell, B. 2015. Chapter 2 - The role of critical zone observatories in critical zone science, in Developments in Earth Surface Processes, vol. 19, pp. 15-78, Elsevier, https://doi.org/10.1016/B978-0-444-63369-9.00002-1.
  • Zuecco, G., Penna, D., Borga. M. 2018. Runoff generation in mountain catchments: long-term hydrological monitoring in the Rio Vauz catchment, Italy. Cuadernos de Investigación Geográfica - Geographical Research Letters 44 (2). https://doi.org/10.18172/cig.3327.