Genetic dissection of fruit quality and ripening traits in melon

  1. Pereira García, Lara
Dirigida por:
  1. Marta Pujol Abajo Director/a
  2. Jordi García Mas Director/a

Universidad de defensa: Universitat Autònoma de Barcelona

Fecha de defensa: 18 de junio de 2018

Tribunal:
  1. Mondher Bouzayen Presidente/a
  2. María José Aranzana Secretario/a
  3. José Miguel Martínez Zapater Vocal

Tipo: Tesis

Teseo: 560777 DIALNET lock_openTESEO editor

Resumen

Melon (Cucumis melo L.) is an important crop worldwide, with a production of around 31 million tons during 2016. Although traditionally breeding programs have been focused on agronomic traits, fruit quality has become a main goal recently. Fruit quality is a complex concept, including diverse traits related to fruit appearance, nutritional and organoleptic traits. Many of these traits are associated to fruit ripening, which is the process that the fruit undergoes to become edible to promote seed dispersal. Fruits are classified according to their ripening behavior into climacteric, when the plant hormone ethylene is synthesized in an autocatalytic way at the onset of ripening, and non-climacteric, in which ethylene has not a major role. The main goal of this work was to study the genetic basis of fruit quality and fruit ripening in melon. We have developed a Recombinant Inbred Line (RIL) population from a cross between two elite cultivars, “Védrantais”, highly climacteric, and “Piel de Sapo”, non-climacteric. The phenotypic diversity in fruit quality and ripening-associated traits, including ethylene production, has been thoroughly studied. A high-density genetic map was constructed using SNPs and INDELs obtained through a genotyping-by-sequencing experiment. A first QTL mapping experiment revealed five major genes and 33 QTLs governing fruit appearance (flesh and rind color, presence of sutures, mottled rind), fruit morphology, sugar content and seed weight. A second QTL mapping experiment identified 15 QTLs modifying ethylene production and ripening-associated traits, as chlorophyll degradation and abscission layer formation. Among them, we highlight a major QTL, ETHQV8.1, involved in ethylene production that was affecting almost all the studied traits, located in a 500-kb interval in chromosome VIII. In order to genetically dissect the fruit ripening process in melon, in addition to the mentioned RIL population, we studied a climacteric near-isogenic line, 8M35, with “Piel de Sapo” background and containing an introgression from the exotic accession PI 161375. 8M35 carries a QTL, ETHQB3.5, delimited in a region of 5 Mb in chromosome III. A positional cloning strategy was followed to fine map ETHQB3.5, generating a diverse set of subNILs. After multiple evaluations of different subNILs, we determined that at least two different genetic factors should be involved in triggering climacteric ripening in 8M35. One of them, named ETHQB3.5.1, which is responsible for the major part of the variation, was delimited to a 500-kb region containing 63 annotated genes. Finally, two reciprocal introgression line (IL) collections were developed, using both “Védrantais” and “Piel de Sapo” as recurrent and donor parental lines, respectively. Recurrent backcrosses were performed in both directions and marker-assisted selection was performed in each generation to select both the target introgressions and the desired background. The current IL collections, covering approximately 95% of the donor parental genome, are formed by 38 ILs. We performed a preliminary phenotyping that allowed to validate some of the QTLs mapped in the RIL population for both fruit quality and fruit ripening traits. In addition, two segregating families of ILs with “Piel de Sapo” background were used to fine map ETHQV8.1, allowing to narrow down the region to a 150-kb interval containing 14 candidate genes. As a summary, this PhD thesis has contributed to improving our knowledge about the genetics of fruit quality and particularly fruit ripening in melon, proposing some important QTLs that will be further explored in the future. Our work suggests that climacteric behavior in melon is a complex and quantitative trait controlled by polygenic inheritance, rather than a qualitative class as described traditionally in the literature.