Alfa-theory for nonlinear Fredholm integral equations
ISSN: 1016-7692
Year of publication: 2004
Volume: 346
Pages: 187-196
Type: Article
beta Ver similares en nube de resultadosMore publications in: Grazer Mathematische Berichte
Abstract
Let F(x)=0 be a nonlinear equation defined between two Banach spaces. S. Smale (see, for instance, his paper with M. Shub [J. Amer. Math. Soc. 6 (1993), no. 2, 459–501; MR1175980 (93k:65045)]) proposed a technique for studying the convergence of Newton's sequence (defined recursively as xn+1=xn−F′(xn)−1F(xn), n=0,1,2,…, starting from a given point x0) to a solution of the above equation. D. R. Wang and F. G. Zhao [J. Comput. Appl. Math. 60 (1995), no. 1-2, 253–269] observed that a certain condition in Smale's theory is too restrictive and not applicable to some simple situations. In this paper, the authors prove that the modified Smale's theory, proposed by Wang and Zhao [op. cit.], is applicable to proving the existence of solutions of several Fredholm integral equations