A Quantum Octonion Algebra

  1. Benkart, G. 2
  2. Pérez-Izquierdo, J.M. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 University of Wisconsin–Madison
    info

    University of Wisconsin–Madison

    Madison, Estados Unidos

    ROR https://ror.org/01y2jtd41

Revista:
Transactions of the American Mathematical Society

ISSN: 0002-9947

Año de publicación: 2000

Volumen: 352

Número: 2

Páginas: 935-968

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1090/S0002-9947-99-02415-0 SCOPUS: 2-s2.0-22844456276 WoS: WOS:000083450300021 GOOGLE SCHOLAR

Otras publicaciones en: Transactions of the American Mathematical Society

Resumen

Using the natural irreducible 8-dimensional representation and the two spin representations of the quantum group Uq(D4) of D4, we construct a quantum analogue of the split octonions and study its properties. We prove that the quantum octonion algebra satisfies the q-Principle of Local Triality and has a nondegenerate bilinear form which satisfies a q-version of the composition property. By its construction, the quantum octonion algebra is à nonassociative algebra with a Yang-Baxter operator action coming from the R-matrix of Uq(D4). The product in the quantum octonions is a Uq(D4)-module homomorphism. Using that, we prove identities for the quantum octonions, and as a consequence, obtain at q = 1 new "representation theory" proofs for very well-known identities satisfied by the octonions. In the process of constructing the quantum octonions we introduce an algebra which is a q-analogue of the 8-dimensional para-Hunvitz algebra. © 1999 American Mathematical Society.