Application of computational intelligence in order to develop hybrid orbit propagation methods

  1. Pérez, I. 1
  2. San-Juan, J.F. 1
  3. San-Martín, M. 1
  4. López-Ochoa, L.M. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Mathematical Problems in Engineering

ISSN: 1024-123X

Año de publicación: 2013

Volumen: 2013

Páginas: 1-12

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1155/2013/631628 SCOPUS: 2-s2.0-84890083466 WoS: WOS:000327331600001 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Mathematical Problems in Engineering

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth's oblateness. © 2013 Iván Pérez et al.