Unsupported Au(I)...Cu(I) interactions: influence of nitrile ligands and aurophilicity on the structure and luminescence

  1. Fernández, E.J. 1
  2. Laguna, A. 2
  3. López-De-Luzuriaga, J.M. 1
  4. Monge, M. 1
  5. Montiel, M. 1
  6. Olmos, M.E. 1
  7. Rodríguez-Castillo, M. 1
  1. 1 Universidad de La Rioja

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Instituto de Nanociencia y Materiales de Aragón

    Instituto de Nanociencia y Materiales de Aragón

    Zaragoza, España

    ROR https://ror.org/031n2c920

Dalton Transactions

ISSN: 1477-9226

Year of publication: 2009

Volume: 36

Pages: 7509-7518

Type: Article

DOI: 10.1039/B900768G SCOPUS: 2-s2.0-69949138038 WoS: WOS:000269493900026 GOOGLE SCHOLAR

More publications in: Dalton Transactions


Cited by

  • Scopus Cited by: 45 (12-01-2023)
  • Web of Science Cited by: 47 (06-02-2023)

JCR (Journal Impact Factor)

  • Year 2009
  • Journal Impact Factor: 4.081
  • Journal Impact Factor without self cites: 3.476
  • Article influence score: 0.882
  • Best Quartile: Q1
  • Area: CHEMISTRY, INORGANIC & NUCLEAR Quartile: Q1 Rank in area: 7/44 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2009
  • SJR Journal Impact: 0.766
  • Best Quartile: Q2
  • Area: Inorganic Chemistry Quartile: Q2 Rank in area: 27/68


The synthesis, structural characterization and the study of the photophysical properties of complexes [AuCu(C6F5) 2(NC-CH3)2] 1, [AuCu(C6F 5)2(NC-Ph)2]22, and [AuCu(C 6F5)2(NC-CHCH-Ph)2] 3 have been carried out. The crystal structures of complexes 1-3 consist of dinuclear Au-Cu units built from mediated metallophilic Au(i)⋯Cu(i) interactions. In the case of complex 2 two dinuclear units interact via an aurophilic interaction leading to a tetranuclear Cu-Au-Au-Cu arrangement. Complex 2 is brightly luminescent in solid state at room temperature and at 77 K with a lifetime in the nanoseconds range, while complexes 1 and 3 do not display luminescence under the same conditions. The presence of the aurophilic interaction in complex 2 seems to be responsible for the blue luminescence observed. DFT and time-dependent DFT calculations agree with the experimental results and support the idea that the origin of the luminescence of these complexes arise from orbitals located in the interacting metals. © The Royal Society of Chemistry 2009.