Hopf algebras in non-associative Lie theory

  1. Mostovoy, J. 1
  2. Perez-Izquierdo, J.M. 2
  3. Shestakov, I.P. 34
  1. 1 Instituto Politécnico Nacional
    info

    Instituto Politécnico Nacional

    Ciudad de México, México

    GRID grid.418275.d

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    GRID grid.119021.a

  3. 3 University of Sao Paulo
    info

    University of Sao Paulo

    São Paulo, Brasil

    GRID grid.11899.38

  4. 4 Sobolev Institute of Mathematics
    info

    Sobolev Institute of Mathematics

    Novosibirsk, Rusia

    GRID grid.426295.e

Journal:
Bulletin of Mathematical Sciences

ISSN: 1664-3607

Year of publication: 2014

Volume: 4

Issue: 1

Pages: 129-173

Type: Article

Export: RIS
DOI: 10.1007/s13373-013-0049-8 SCOPUS: 2-s2.0-84906483955 WoS: 000339660500005 GOOGLE SCHOLAR
Institutional repository: lock_openOpen access editor

Metrics

Cited by

  • Scopus Cited by: 12 (14-07-2021)

Journal Citation Reports

  • Year 2014
  • Journal Impact Factor: 0.586
  • Best Quartile: Q3
  • Area: MATHEMATICS Quartile: Q3 Rank in area: 164/312 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2014
  • SJR Journal Impact: 1.039
  • Best Quartile: Q1
  • Area: Mathematics (miscellaneous) Quartile: Q1 Rank in area: 88/409

CiteScore

  • Year 2014
  • CiteScore of the Journal : 2.0
  • Area: Mathematics (all) Percentile: 85

Abstract

We review the developments in the Lie theory for non-associative products from 2000 to date and describe the current understanding of the subject in view of the recent works, many of which use non-associative Hopf algebras as the main tool.