Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine

  1. Fernandez, L. 4
  2. Torregrosa, L. 3
  3. Segura, Vincent . 2
  4. Bouquet, A. 1
  5. Martinez-Zapater, J.M. 1
  1. 1 Centro Nacional de Biotecnología
    info

    Centro Nacional de Biotecnología

    Madrid, España

    ROR https://ror.org/015w4v032

  2. 2 University of York
    info

    University of York

    York, Reino Unido

    ROR https://ror.org/04m01e293

  3. 3 Institut National de la Recherche Agronomique
    info

    Institut National de la Recherche Agronomique

    París, Francia

  4. 4 Instituto de Ciencias de la Vid y del Vino
    info

    Instituto de Ciencias de la Vid y del Vino

    Logroño, España

    ROR https://ror.org/01rm2sw78

Revista:
Plant Journal

ISSN: 0960-7412

Año de publicación: 2010

Volumen: 61

Número: 4

Páginas: 545-557

Tipo: Artículo

DOI: 10.1111/J.1365-313X.2009.04090.X PMID: 19947977 SCOPUS: 2-s2.0-76549117971 WoS: WOS:000274336900001 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Plant Journal

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

We have characterized the genetic and molecular origin of the reiterated reproductive meristem (RRM) somatic variant phenotype of grapevine cultivar Carignan. Here, we show that the extreme cluster proliferation and delayed anthesis observed in this somatic variant is caused by a single dominant mutation. Transcriptional profiling of Carignan and RRM plants during early stages of inflorescence development demonstrated the overexpression of a few regulatory genes, including VvTFL1A, a close TFL1 Arabidopsis homolog, in RRM inflorescences. Genetic and molecular analyses correlated the insertion of a class-II transposable element, Hatvine1-rrm, in the VvTFL1A promoter, with upregulation of the corresponding VvTFL1A allele in reproductive and vegetative organs of the shoot apex. These results suggest a role for this TFL1 grapevine homolog in the determination of inflorescence structure, with a critical effect on the size and branching pattern of grapevine fruit clusters. Our results demonstrate the existence of spontaneous cis-activation processes caused by class-II transposable elements in grapevine plants, and point to their possible role as a mechanism to generate somatic cell variation in perennial plants. This mechanism is expected to generate dominant phenotypes in chimeric sectors that can be readily exposed to natural selection. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.