Heat and Poisson semigroups for Fourier-Neumann expansions
- Betancor, J.J. 1
- Ciaurri, O. 4
- Martinez, T. 2
- Perez, M. 3
- Torrea, J.L. 2
- Varona, J.L. 4
-
1
Universidad de La Laguna
info
-
2
Universidad Autónoma de Madrid
info
-
3
Universidad de Zaragoza
info
-
4
Universidad de La Rioja
info
ISSN: 0037-1912
Año de publicación: 2006
Volumen: 73
Número: 1
Páginas: 129-142
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Semigroup Forum
Resumen
Given α > -1, consider the second order differential operator in (0, ∞) Lα ≡ (x2d2/dx 2 + (2α + 3)xd/dx + x2 + (α + 1) 2)(f), which appears in the theory of Bessel functions. The purpose of this paper is to develop the corresponding harmonic analysis taking L α as the analogue to the classical Laplacian. Namely we study the boundedness properties of the heat and Poisson semigroups. These boundedness properties allow us to obtain some convergence results that can be used to solve the Cauchy problem for the corresponding heat and Poisson equations. © Springer 2006.