Aliquot sequence 3630 ends after reaching 100 digits

  1. Benito, M. 4
  2. Creyaufmüller, W. 2
  3. Varona, J.L. 1
  4. Zimmermann, P. 3
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Freie Waldorfschule Aachen, Anton-Kurze-Allee 10, Aachen, D-52074, Germany
  3. 3 INRIA Lorraine, Technopôle de Nancy-Brabois, 615 rue du Jardin Botanique, BP 101, Villers-lès-Nancy, F-54600, France
  4. 4 Instituto Sagasta, Glorieta del Doctor Zubía s/n, Logroño, 26003, Spain
Revista:
Experimental mathematics

ISSN: 1058-6458

Año de publicación: 2002

Volumen: 11

Número: 2

Páginas: 201-206

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1080/10586458.2002.10504686 SCOPUS: 2-s2.0-0036449582 WoS: WOS:000179327300004 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Experimental mathematics

Repositorio institucional: lock_openAcceso abierto Postprint

Resumen

In this paper we present a new computational record: the aliquot sequence starting at 3630 converges to 1 after reaching a hundred decimal digits. Also, we show the current status of all the aliquot sequences starting with a number smaller than 10,000; we have reached at leat 95 digits for all of them. In particular, we have reached at least 112 digits for the so-called "Lehmer five sequences," and 101 digits for the "Godwin twelve sequences." Finally, we give a summary showing the number of aliquot sequences of unknown end starting with a number less than or equal 10<sup>6</sup>.