Antimicrobial resistance and virulence genes in Escherichia coli and enterococci from red foxes (Vulpes vulpes)
- Radhouani, H. 23
- Igrejas, G. 3
- Gonçalves, A. 23
- Pacheco, R. 23
- Monteiro, R. 23
- Sargo, R. 3
- Brito, F. 23
- Torres, C. 1
- Poeta, P. 23
-
1
Universidad de La Rioja
info
- 2 Center of Studies of Animal and Veterinary Sciences, Vila Real, Portugal
-
3
Universidade de Trás-os-Montes e Alto Douro
info
ISSN: 1075-9964
Año de publicación: 2013
Volumen: 23
Páginas: 82-86
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Anaerobe
Proyectos relacionados
Resumen
The aims of the study were to analyse the prevalence of antimicrobial resistance and the mechanisms implicated, as well as the virulence factors, in faecal Escherichia coli and Enterococcus spp. from red foxes. From 52 faecal samples, 22 E. coli (42.3%) and 50 enterococci (96.2%) isolates were recovered (one/sample). A high percentage of E. coli isolates exhibited resistance to streptomycin, tetracycline, trimethoprim-sulfamethoxazole or ampicillin (54-27%), and they harboured the aadA, tet(A) and/or tet(B), sul1 and blaTEM resistance genes, respectively. The E. coli isolates were ascribed to the 4 major phylogroups, D (41% of isolates), A (31.8%), B1 (18.2%) and B2 (9.1%), and carried the fimA (63.3%) or aer (13.6%) virulence genes. Among enterococcal isolates, Enterococcus faecium was the most prevalent species (50%). A high percentage of enterococcal isolates showed tetracycline resistance (88%) harbouring different combinations of tet(M) and tet(L) genes. The erm(B) or the aph(3′)-IIIa gene were identified in most of our erythromycin- or kanamycin-resistant enterococci, respectively. This report suggests the role of red foxes from rural areas in the cycle of transmission and spread of antimicrobial-resistant E. coli and enterococci into the environment, representing a reservoir of these antimicrobial-resistant microorganisms. © 2013 Elsevier Ltd. All rights reserved.