A family of iterative methods that uses divided differences of first and second orders
- Ezquerro, J.A. 2
- Grau-Sánchez, M. 1
- Hernández-Verón, M.A. 2
- Noguera, M. 1
-
1
Universitat Politècnica de Catalunya
info
-
2
Universidad de La Rioja
info
ISSN: 1017-1398
Année de publication: 2015
Volumen: 70
Número: 3
Pages: 571-589
Type: Article
beta Ver similares en nube de resultadosD'autres publications dans: Numerical Algorithms
Projets liés
Résumé
The family of fourth-order Steffensen-type methods proposed by Zheng et al. (Appl. Math. Comput. 217, 9592–9597 (2011)) is extended to solve systems of nonlinear equations. This extension uses multidimensional divided differences of first and second orders. For a certain computational efficiency index, two optimal methods are identified in the family. Semilocal convergence is shown for one of these optimal methods under mild conditions. Moreover, a numerical example is given to illustrate the theoretical results.