On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions

  1. Hernández-Verón, M.A. 1
  2. Martínez, E. 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad Politécnica de Valencia
    info

    Universidad Politécnica de Valencia

    Valencia, España

    ROR https://ror.org/01460j859

Revista:
Numerical Algorithms

ISSN: 1017-1398

Any de publicació: 2015

Volum: 70

Número: 2

Pàgines: 377-392

Tipus: Article

beta Ver similares en nube de resultados
DOI: 10.1007/S11075-014-9952-7 SCOPUS: 2-s2.0-84942503350 WoS: WOS:000361819600009 GOOGLE SCHOLAR

Altres publicacions en: Numerical Algorithms

Resum

In this paper the semilocal convergence for an alternative to the three steps Newton’s method with frozen derivative is presented. We analyze the generalization of convergence conditions given by w-conditioned non-decreasing functions instead of the first derivative Lipschitz or Holder continuous given by other authors. A nonlinear integral equation of mixed Hammerstein type is considered for illustrating the new theoretical results obtained in this paper, where previous results can not be satisfied.