Symmetric matrices, orthogonal Lie algebras and Lie-Yamaguti algebras
- Benito, P. 1
- Bremner, M. 2
- Madariaga, S. 2
-
1
Universidad de La Rioja
info
-
2
University of Saskatchewan
info
ISSN: 0308-1087
Año de publicación: 2015
Volumen: 63
Número: 6
Páginas: 1257-1281
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Linear and Multilinear Algebra
Proyectos relacionados
2014/00067/001
Resumen
On the set (Formula presented.) of symmetric (Formula presented.) matrices over the field (Formula presented.) , we can define various binary and ternary products which endow it with the structure of a Jordan algebra or a Lie or Jordan triple system. All these nonassociative structures have the orthogonal Lie algebra (Formula presented.) as derivation algebra. This gives an embedding (Formula presented.) for (Formula presented.). We obtain a sequence of reductive pairs (Formula presented.) that provides a family of irreducible Lie-Yamaguti algebras. In this paper, we explain in detail the construction of these Lie-Yamaguti algebras. In the cases (Formula presented.) , we use computer algebra to determine the polynomial identities of degree (Formula presented.) ; we also study the identities relating the bilinear Lie-Yamaguti product with the trilinear product obtained from the Jordan triple product.