On the local convergence of a fifth-order iterative method in Banach spaces

  1. Cordero, A. 1
  2. Ezquerro, J.A. 2
  3. Hernández-Verón, M.A. 2
  4. Torregrosa, J.R. 1
  1. 1 Universidad Politécnica de Valencia
    info

    Universidad Politécnica de Valencia

    Valencia, España

    ROR https://ror.org/01460j859

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Applied Mathematics and Computation

ISSN: 0096-3003

Año de publicación: 2015

Volumen: 251

Páginas: 396-403

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1016/J.AMC.2014.11.084 SCOPUS: 2-s2.0-84916898371 WoS: WOS:000347405500036 GOOGLE SCHOLAR

Otras publicaciones en: Applied Mathematics and Computation

Resumen

A new predictor-corrector iterative procedure, that combines Newton's method as predictor scheme and a fifth-order iterative method as a corrector, is designed for solving nonlinear equations in Banach spaces. We analyze the local order of convergence and the regions of accessibility of the new method comparing it with Newton's method, both theoretical and numerically.