The derived superalgebra of skew elements of a semiprime superalgebra with superinvolution
-
1
Universidad de La Rioja
info
ISSN: 0021-8693
Año de publicación: 2014
Volumen: 420
Páginas: 65-85
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Journal of Algebra
Proyectos relacionados
Resumen
In this paper we investigate the Lie structure of the derived Lie superalgebra [K, K], with K the set of skew elements of a semiprime associative superalgebra A with superinvolution. We show that if U is a Lie ideal of [K, K], then either there exists an ideal J of A such that the Lie ideal [J∩K, K] is nonzero and contained in U, or A is a subdirect sum of A', A′, where the image of U in A' is central, and A′ is a subdirect product of orders in simple superalgebras, each at most 16-dimensional over its center.