Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins

  1. López-González, L. 12
  2. Mouriz, A. 1
  3. Narro-Diego, L. 1
  4. Bustos, R. 1
  5. Martínez-Zapater, J.M. 3
  6. Jarillo, J.A. 1
  7. Piñeiro, M. 1
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  2. 2 Clermont Université
    info

    Clermont Université

    Aubière, Francia

    ROR https://ror.org/03yf5zr20

  3. 3 Instituto de Ciencias de la Vid y del Vino
    info

    Instituto de Ciencias de la Vid y del Vino

    Logroño, España

    ROR https://ror.org/01rm2sw78

Revista:
Plant Cell

ISSN: 1040-4651

Año de publicación: 2014

Volumen: 26

Número: 10

Páginas: 3922-3938

Tipo: Artículo

DOI: 10.1105/TPC.114.130781 SCOPUS: 2-s2.0-84912061768 WoS: WOS:000345920900013 GOOGLE SCHOLAR

Otras publicaciones en: Plant Cell

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

The interplay among histone modifications modulates the expression of master regulatory genes in development. Chromatin effector proteins bind histone modifications and translate the epigenetic status into gene expression patterns that control development. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific proteins with a plant homeodomain (PHD) motif, SHORT LIFE (SHL) and EARLY BOLTING IN SHORT DAYS (EBS), function in the chromatin-mediated repression of floral initiation and play independent roles in the control of genes regulating flowering. Previous results showed that repression of the floral integrator FLOWERING LOCUS T (FT) requires EBS. We establish that SHL is necessary to negatively regulate the expression of SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), another floral integrator. SHL and EBS recognize di- and trimethylated histone H3 at lysine 4 and bind regulatory regions of SOC1 and FT, respectively. These PHD proteins maintain an inactive chromatin conformation in SOC1 and FT by preventing high levels of H3 acetylation, bind HISTONE DEACETYLASE6, and play a central role in regulating flowering time. SHL and EBS are widely conserved in plants but are absent in other eukaryotes, suggesting that the regulatory module mediated by these proteins could represent a distinct mechanism for gene expression control in plants.