Photophysical responses in Pt2Pb clusters driven by solvent interactions and structural changes in the PbII environment
- Berenguer, J.R. 1
- Lalinde, E. 1
- Martín, A. 2
- Moreno, M.T. 1
- Ruiz, S. 1
- Sánchez, S. 3
- Shahsavari, H.R. 1
-
1
Universidad de La Rioja
info
-
2
Universidad de Zaragoza
info
-
3
University of Manchester
info
ISSN: 0020-1669
Année de publication: 2014
Volumen: 53
Número: 16
Pages: 8770-8785
Type: Article
beta Ver similares en nube de resultadosD'autres publications dans: Inorganic Chemistry
Projets liés
Résumé
Two types of Pt2Pb luminescent clusters were successfully prepared by the reaction of [Pt(C6F5)(bzq)(OCMe 2)] (1) and [Pt(C6F5)(ppy)(dmso)] (2) with [Pb(SpyR-5)2] (R = H, CF3). Thus, whereas 5 (ppy, Spy) is generated through coordination of the pyridine-N atoms to the Pt centers, the formation of 3, 4 (bzq), and 6 (ppy, SpyCF3) is accompanied by a formal thiolate transfer from PbII to PtII, keeping the two N atoms in the primary environment of the lead. In 5, the neutral Pb center adopts a rather stable and symmetrical "Pt2S2" coordination sphere supplemented by two Pb··Fo contacts, whereas for the remaining species several pseudopolymorphs were found depending on the solvent (3, 4) and crystallization conditions (6). This structural diversity relies on changes in the coordination mode of the SpyR ligands (μ-κS,N/μ-κ3S,N,S), intermetallic Pt-Pb bonds, and secondary intra- and intermolecular contacts induced by Pb-solvent binding. Notably, the changes, which entail a slight tuning of the stereochemical activity of the lone pair, have also a remarkable impact on the emissive state (3L'CCT/3L'LCT, SpyR → Pb,Pt/(C λN) in nature). Clusters 3 and 4 display a distinct and fast reversible blue shift vapoluminescent response (4 shows also color changes) to donor solvents, correlated with changes in the environment of the Pb II ion (asymmetric hemidirected to more symmetric holodirected) upon solvent binding and, additionally, in 4 with modifications in the crystal packing, as confirmed by XRD and supported by TD-DFT calculations. 5 and 6 do not show a vapoluminescent response. However, for 6, three different and interconvertible forms, a symmetrical form (yellow 6-y) and two asymmetrical forms with a rather short Pt-Pb bond (pale orange 6·acetone and orange 6-o), exhibiting different emissions were found. Notably, slow crystallization and low concentration favor the formation of the thermodynamically more stable yellow form, whereas fast crystallization gives rise to orange solids with a remarkable red shift of the emission. Interestingly, 6 also exhibits reversible mechanochromic color and luminescence changes. © 2014 American Chemical Society.