Nilpotent Sabinin algebras

  1. Mostovoy, J. 1
  2. Pérez-Izquierdo, J.M. 2
  3. Shestakov, I.P. 34
  1. 1 Instituto Politécnico Nacional
    info

    Instituto Politécnico Nacional

    Ciudad de México, México

    GRID grid.418275.d

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    GRID grid.119021.a

  3. 3 University of Sao Paulo
    info

    University of Sao Paulo

    São Paulo, Brasil

    GRID grid.11899.38

  4. 4 Sobolev Institute of Mathematics
    info

    Sobolev Institute of Mathematics

    Novosibirsk, Rusia

    GRID grid.426295.e

Revista:
Journal of Algebra

ISSN: 0021-8693

Ano de publicación: 2014

Volume: 419

Páxinas: 95-123

Tipo: Artigo

Exportar: RIS
DOI: 10.1016/j.jalgebra.2014.07.015 SCOPUS: 2-s2.0-84906507964 WoS: 000342117200005 arXiv: 1312.2223 GOOGLE SCHOLAR lock_openAcceso aberto editor
Arquivo institucional: lock_openAcceso aberto editor

Indicadores

Citas recibidas

  • Citas en Scopus: 1 (07-10-2021)

JCR (Journal Impact Factor)

  • Ano 2014
  • Factor de impacto da revista: 0.599
  • Cuartil maior: Q3
  • Área: MATHEMATICS Cuartil: Q3 Posición na área: 159/312 (Edición: SCIE)

SCImago Journal Rank

  • Ano 2014
  • Impacto SJR da revista: 1.541
  • Cuartil maior: Q1
  • Área: Algebra and Number Theory Cuartil: Q1 Posición na área: 9/92

CiteScore

  • Ano 2014
  • CiteScore da revista: 1.2
  • Área: Algebra and Number Theory Percentil: 53

Resumo

In this paper we establish several basic properties of nilpotent Sabinin algebras. Namely, we show that nilpotent Sabinin algebras (1) can be integrated to produce nilpotent loops, (2) satisfy an analogue of the Ado theorem, (3) have nilpotent Lie envelopes. We also give a new set of axioms for Sabinin algebras. These axioms reflect the fact that a complementary subspace to a Lie subalgebra in a Lie algebra is a Sabinin algebra. Finally, we note that the non-associative version of the Jennings theorem produces a version of the Ado theorem for loops whose commutator-associator filtration is of finite length. © 2014.