Simultaneous determination of arsenic, antimony, selenium and tin by gas phase molecular absorption spectrometry after two step hydride generation and preconcentration in a cold trap system
- Cabredo, S. 1
- Galbán, J. 2
- Sanz, J. 1
-
1
Universidad de La Rioja
info
-
2
Universidad de Zaragoza
info
ISSN: 0039-9140
Año de publicación: 1998
Volumen: 46
Número: 4
Páginas: 631-638
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Talanta (Oxford)
Resumen
A cold trap system for the simultaneous determination of arsenic, antimony, selenium and tin by continuous hydride generation and gas phase molecular absorption spectrometry is described. The hydride generation is carried out in two steps; first, tin hydride is generated at low acidity and second, arsenic, antimony and selenium hydrides are formed at higher acidity. All the hydrides are collected in a liquid nitrogen cryogenic trap and transported to the flow cell of a diode array spectrophotometer, where molecular absorption spectra are obtained in the 190-250 nm range. Five calibration solutions containing arsenic, antimony, selenium and tin are solved using multiple linear regression analysis. Tests are performed in order to extend the same manifold to other hydrides but no signals are obtained for bismuth, cadmium, lead, tellurium and germanium. Under the optimum conditions found and using the wavelengths of maximum sensitivity (190, 198, 220 and 194 nm), the analytical characteristics of each element are calculated. The detection limits are 0.050, 0.020, 0.12 and 1.1 μg ml -1 and the RSD values are 3.7, 3.1, 3.5 and 3.0% for As, Sb, Se and Sn, respectively. The method is applied to As, Sb, Se and Sn determination in natural spiked water samples.