Structural characterization of a eukaryotic cyanase from Tetranychus urticae

  1. Schlachter, C.R. 2
  2. Klapper, V. 2
  3. Wybouw, N. 4
  4. Radford, T. 2
  5. Van Leeuwen, T. 34
  6. Grbic, M. 15
  7. Chruszcz, M. 2
  1. 1 University of Western Ontario
    info

    University of Western Ontario

    London, Canadá

    ROR https://ror.org/02grkyz14

  2. 2 University of South Carolina
    info

    University of South Carolina

    Columbia, Estados Unidos

    ROR https://ror.org/02b6qw903

  3. 3 Ghent University
    info

    Ghent University

    Gante, Bélgica

    ROR https://ror.org/00cv9y106

  4. 4 University of Amsterdam
    info

    University of Amsterdam

    Ámsterdam, Holanda

    ROR https://ror.org/04dkp9463

  5. 5 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Journal of Agricultural and Food Chemistry

ISSN: 0021-8561

Año de publicación: 2017

Volumen: 65

Número: 27

Páginas: 5453-5462

Tipo: Artículo

DOI: 10.1021/ACS.JAFC.7B01333 PMID: 28613863 SCOPUS: 2-s2.0-85025081778 WoS: WOS:000405642600002 GOOGLE SCHOLAR

Otras publicaciones en: Journal of Agricultural and Food Chemistry

Resumen

The two-spotted spider mite Tetranychus urticae is a polyphagous agricultural pest and poses a high risk to global crop production as it is rapidly developing pesticide resistance. Genomic and transcriptomic analysis has revealed the presence of a remarkable cyanase gene in T. urticae and related mite species within the Acariformes lineage. Cyanase catalyzes the detoxification of cyanate and is potentially an attractive protein target for the development of new acaricides. Phylogenetic analysis indicates that within the Acariformes, the cyanase gene originates from a single horizontal gene transfer event, which precedes subsequent speciation. Our structural studies presented here compare and contrast prokaryotic cyanases to T. urticae cyanase, which all form homodecamers and have conserved active site residues, but display different surface areas between homodimers in the overall decameric structure. © 2017 American Chemical Society.