Optomechanical Control of Quantum Yield in Trans–Cis Ultrafast Photoisomerization of a Retinal Chromophore Model

  1. Valentini, A. 23
  2. Rivero, D. 2
  3. Zapata, F. 2
  4. García-Iriepa, C. 12
  5. Marazzi, M. 67
  6. Palmeiro, R. 2
  7. Fdez. Galván, I. 5
  8. Sampedro, D. 1
  9. Olivucci, M. 348
  10. Frutos, L.M. 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    GRID grid.119021.a

  2. 2 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    GRID grid.7159.a

  3. 3 Università degli Studi di Siena
    info

    Università degli Studi di Siena

    Siena, Italia

    GRID grid.9024.f

  4. 4 Bowling Green State University
    info

    Bowling Green State University

    Bowling Green, Estados Unidos

    GRID grid.253248.a

  5. 5 Uppsala University
    info

    Uppsala University

    Upsala, Suecia

    GRID grid.8993.b

  6. 6 Centre National de la Recherche Scientifique
    info

    Centre National de la Recherche Scientifique

    París, Francia

    GRID grid.4444.0

  7. 7 University of Lorraine
    info

    University of Lorraine

    Nancy, Francia

    GRID grid.29172.3f

  8. 8 University of Strasbourg
    info

    University of Strasbourg

    Estrasburgo, Francia

    GRID grid.11843.3f

Journal:
Angewandte Chemie International

ISSN: 1433-7851

Year of publication: 2017

Volume: 56

Issue: 14

Pages: 3842-3846

Type: Article

Export: RIS
DOI: 10.1002/anie.201611265 SCOPUS: 2-s2.0-85014060460 WoS: 000397346200009 GOOGLE SCHOLAR

Abstract

The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans-to-cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim