On the local convergence of a Newton–Kurchatov-type method for non-differentiable operators

  1. Hernández-Verón, M.A. 1
  2. Rubio, M.J. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Applied Mathematics and Computation

ISSN: 0096-3003

Año de publicación: 2017

Volumen: 304

Páginas: 1-9

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1016/J.AMC.2017.01.010 SCOPUS: 2-s2.0-85011347287 WoS: WOS:000395963100001 GOOGLE SCHOLAR

Otras publicaciones en: Applied Mathematics and Computation

Objetivos de desarrollo sostenible

Resumen

By means of a nice idea, a Newton–Kurchatov type iterative process is constructed for solving nonlinear equations in Banach spaces. We analyze the local convergence of this iterative process. This study have an important and novel feature, since it is applicable to non-differentiable operators. So far, most of the local convergence results considered by other authors may apply only to differentiable operators due to the conditions that are required on the solution of the nonlinear equation. © 2017 Elsevier Inc.