Analytical approximations to the generalization of the Kepler equation

  1. López, R. 2
  2. San-Juan, J.F. 3
  3. Hautesserres, D. 1
  1. 1 Centre National D'Etudes Spatiales
    info

    Centre National D'Etudes Spatiales

    París, Francia

    ROR https://ror.org/04h1h0y33

  2. 2 Centro de Investigación Biomédica de La Rioja
    info

    Centro de Investigación Biomédica de La Rioja

    Logroño, España

    ROR https://ror.org/03vfjzd38

  3. 3 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Advances in the Astronautical Sciences

ISSN: 0065-3438

Año de publicación: 2016

Volumen: 156

Páginas: 695-706

Tipo: Artículo

beta Ver similares en nube de resultados

Otras publicaciones en: Advances in the Astronautical Sciences

Resumen

The generalized Kepler equation is a transcendental non-linear equation which appears in the zonal problem of the artificial satellite theory when the Krylov-Bogoliubov-Mitropolsky method is employed. In this work, the Lie-Deprit method is used to apply Lagrange's inversion theorem in order to solve the generalized Kepler equation. For small eccentricities, the analytical approximate solution yields similarly accurate results to numerical methods. For the rest of eccentricities, we discuss the applicability of this approximation as an initial guess in the numerical method used to solve the generalized Kepler equation.