Analytical approximations to the generalization of the Kepler equation
- López, R. 2
- San-Juan, J.F. 3
- Hautesserres, D. 1
-
1
Centre National D'Etudes Spatiales
info
-
2
Centro de Investigación Biomédica de La Rioja
info
-
3
Universidad de La Rioja
info
ISSN: 0065-3438
Año de publicación: 2016
Volumen: 156
Páginas: 695-706
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Advances in the Astronautical Sciences
Proyectos relacionados
Resumen
The generalized Kepler equation is a transcendental non-linear equation which appears in the zonal problem of the artificial satellite theory when the Krylov-Bogoliubov-Mitropolsky method is employed. In this work, the Lie-Deprit method is used to apply Lagrange's inversion theorem in order to solve the generalized Kepler equation. For small eccentricities, the analytical approximate solution yields similarly accurate results to numerical methods. For the rest of eccentricities, we discuss the applicability of this approximation as an initial guess in the numerical method used to solve the generalized Kepler equation.