Convergence of Newton’s method under Vertgeim conditions: new extensions using restricted convergence domains

  1. Argyros, I.K. 2
  2. Ezquerro, J.A. 1
  3. Hernández-Verón, M.A. 1
  4. Magreñán, Á.A. 3
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Cameron University
    info

    Cameron University

    Lawton, Estados Unidos

    ROR https://ror.org/00rgv0036

  3. 3 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

Revista:
Journal of Mathematical Chemistry

ISSN: 0259-9791

Año de publicación: 2017

Volumen: 55

Número: 7

Páginas: 1392-1406

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1007/S10910-016-0720-X SCOPUS: 2-s2.0-85008154335 WoS: WOS:000404672300004 GOOGLE SCHOLAR

Otras publicaciones en: Journal of Mathematical Chemistry

Objetivos de desarrollo sostenible

Resumen

We present new sufficient convergence conditions for the semilocal convergence of Newton’s method to a locally unique solution of a nonlinear equation in a Banach space. We use Hölder and center Hölder conditions, instead of just Hölder conditions, for the first derivative of the operator involved in combination with our new idea of restricted convergence domains. This way, we find a more precise location where the iterates lie, leading to at least as small Hölder constants as in earlier studies. The new convergence conditions are weaker, the error bounds are tighter and the information on the solution at least as precise as before. These advantages are obtained under the same computational cost. Numerical examples show that our results can be used to solve equations where older results cannot. © 2017 Springer International Publishing Switzerland