Quantum dynamics study of the K+HF(v=0-2, j=0) -> KF + H reaction and comparison with quassiclassical trajectory results

  1. Mayneris, J. 3
  2. Martínez, R. 4
  3. Hernando, J. 2
  4. Gray, S.K. 1
  5. González, M. 3
  1. 1 Argonne National Laboratory
    info

    Argonne National Laboratory

    Lemont, Estados Unidos

    ROR https://ror.org/05gvnxz63

  2. 2 Universitat Autònoma de Barcelona
    info

    Universitat Autònoma de Barcelona

    Barcelona, España

    ROR https://ror.org/052g8jq94

  3. 3 Universitat de Barcelona
    info

    Universitat de Barcelona

    Barcelona, España

    ROR https://ror.org/021018s57

  4. 4 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Journal of Chemical Physics

ISSN: 0021-9606

Año de publicación: 2008

Volumen: 128

Número: 14

Páginas: 144302

Tipo: Artículo

DOI: 10.1063/1.2850887 SCOPUS: 2-s2.0-42149115030 WoS: WOS:000255470300024 GOOGLE SCHOLAR

Otras publicaciones en: Journal of Chemical Physics

Resumen

Extensive quantum real wave packet calculations within the helicity decoupling approximation are used to analyze the influence of the HF vibrational excitation on the K+HF (v=0-2,j=0) →KF+H reaction. Quantum reaction probabilities P and reaction cross sections are compared with corresponding quasiclassical trajectory (QCT) results. Disregarding threshold regions for v=0 and 1 (v=2 has no threshold), both approaches lead to remarkably similar results, particularly for , validating the use of the QCT method for this system. When moving from v=0 to v=1 there is a large increase in P and , as expected for a late barrier system. For v=2 the reaction becomes exoergic and P≈0.95 (with the exception of large total angular momenta where centrifugal barriers play a role). While substantial vibrational enhancement of the reactivity is thus seen, it is still quite less than that inferred from experimental data in the intermediate and high collision energy ranges. The origin of this discrepancy is unclear. © 2008 American Institute of Physics.