Behavior of weak type bounds for high dimensional maximal operators defined by certain radial measures
-
1
Universidad Autónoma de Madrid
info
-
2
Universidad de La Rioja
info
ISSN: 1385-1292
Año de publicación: 2010
Volumen: 15
Número: 2
Páginas: 199-213
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Positivity
Proyectos relacionados
Resumen
As shown in Aldaz (Bull. Lond. Math. Soc. 39:203-208, 2007), the lowest constants appearing in the weak type (1, 1) inequalities satisfied by the centered Hardy-Littlewood maximal operator associated to certain finite radial measures, grow exponentially fast with the dimension. Here we extend this result to a wider class of radial measures and to some values of p > 1. Furthermore, we improve the previously known bounds for p = 1. Roughly speaking, whenever p ∈(1,1.03], if μ is defined by a radial, radially decreasing density satisfying some mild growth conditions, then the best constants c p,d,μ in the weak type (p, p) inequalities satisfy c p,d,μ ≥ 1.005 d for all d sufficiently large. We also show that exponential increase of the best constants occurs for certain families of doubling measures, and for arbitrarily high values of p. © 2010 Birkhäuser / Springer Basel AG.