Auxiliary point on the semilocal convergence of Newton's method

  1. Ezquerro, J.A. 1
  2. Hernández-Verón, M.A. 1
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Journal of Computational and Applied Mathematics

ISSN: 0377-0427

Año de publicación: 2018

Tipo: Artículo

beta Ver similares en nube de resultados
DOI: 10.1016/J.CAM.2018.03.015 SCOPUS: 2-s2.0-85046675320 GOOGLE SCHOLAR

Otras publicaciones en: Journal of Computational and Applied Mathematics

Resumen

We use an auxiliary point on the semilocal convergence of Newton's method when the majorant principle of Kantorovich is applied to operators with high order derivatives satisfying a center Lipschitz type condition, so that we extend the classical conditions of these types, that are centered at the starting point of Newton's method, to other points belonging to the domain of definition of the operator involved. This extension provides a modification of the domain of starting points for Newton's method which allows increasing the choice of starting points. We illustrate this study with nonlinear Fredholm integral equations. © 2018 Elsevier B.V.