A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst
- Koch, A.A. 11
- Hansen, D.A. 11
- Shende, V.V. 11
- Furan, L.R. 1
- Houk, K.N. 3
- Jiménez-Osés, G. 2
- Sherman, D.H. 1111
-
1
University of Michigan–Ann Arbor
info
-
2
Universidad de La Rioja
info
-
3
University of California Los Angeles
info
ISSN: 0002-7863
Año de publicación: 2017
Volumen: 139
Número: 38
Páginas: 13456-13465
Tipo: Artículo
beta Ver similares en nube de resultadosOtras publicaciones en: Journal of the American Chemical Society
Proyectos relacionados
2015/00062/001
Resumen
Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper, we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system, preventing the formation of epimerized macrolactones. Here, we perform molecular dynamics simulations showing the epimerized hexaketide was accommodated within the Pik TE active site; however, intrinsic conformational preferences of the substrate resulted in predominately unproductive conformations, in agreement with the observed hydrolysis. Accordingly, we engineered the stereoselective Pik TE to yield a variant (TES148C) with improved reaction kinetics and gain-of-function processing of an unnatural, epimerized hexaketide. Quantum mechanical comparison of model TES148C and TEWT reaction coordinate diagrams revealed a change in mechanism from a stepwise addition-elimination (TEWT) to a lower energy concerted acyl substitution (TES148C), accounting for the gain-of-function and improved reaction kinetics. Finally, we introduced the S148C mutation into a polyketide synthase module (PikAIII-TE) to impart increased substrate flexibility, enabling the production of diastereomeric macrolactones. © 2017 American Chemical Society.